Manual

.I HI-TECH CP Tools for the
occ PIC18 MCU Family

C O M P I L E R S
by Microchip Technology

HI-TECH C Compiler for
PIC18 MCUs

Microchip Technology Inc.

Copyright (C) 2011 Microchip Technology Inc.
All Rights Reserved. Printed in Australia.
Produced on: September 27, 2011

Australian Design Centre

45 Colebard Street West

Acacia Ridge QLD 4110
Australia

web: http://www.microchip.com

http://www.microchip.com

Contents

Table of Contents
List of Tables
1 Introduction
1.1 Typographic conventions oo v v ittt e e
2 PICC18 Command-line Driver
2.1 Invokingthe Compiler
2.1.1 Long Command Lines
2.2 The Compilation Sequence i
2.2.1 Single-step Compilation o
2.2.2 Generating Intermediate Files 0oL,
2.2.3 Special Processing e e
2.23.1 Printfcheck o
2.2.3.2 Assembly Code Requirements
23 RuntimeFiles e
23.1 LibraryFiles
2.3.1.1 Standard Libraries
2.3.1.2 Utility Libraries o0 i i e
2.3.1.3 Peripheral Libraries
232 Runtime StartupCode Lo
2.3.2.1 Initialization of Datapsects
2.3.22 Clearingthe BssPsects
2.3.3 ThePowerupRoutine
234 TheprintfRoutine
2.4 Debugging Information L e
2.5 Compiler Messages o v it e e e

17

19
19

CONTENTS CONTENTS

2.6

2.5.1 Messaging OVerview vt v vt e e 36
2.5.2 Message Language e 37
253 Message Type o o o i i e e e e e 37
254 Message Format L 38
2.5.5 Changing Message Behaviour o000 0oL 40

2.5.5.1 Disabling Messages i e e 40

2.5.5.2 Changing Message Types v i v .. 41
PICC18 Driver Option Descriptionso oo v v i oo 41
2.6.1 OptionFormats 41
2.6.2 -C:CompiletoObjectFile 42
2.6.3 -Dmacro:DefineMacro L 42
2.6.4 -Efile: Redirect Compiler ErrorstoaFile. 43
2.6.5 -Gfile: Generate Source-level Symbol File 43
2.6.6 -Ipath:Include SearchPath 44
2.6.7 -Llibrary:ScanLibrary, 44
2.6.8 -L-option: Adjust Linker Options Directly 45
2.69 -Mfile:GenerateMapFile 47
2.6.10 -Nsize:IdentifierLength L. 47
2.6.11 -0file:Specify OutputFile 47
2.6.12 -P: Preprocess Assembly Files 48
2.6.13 -Q:QuietMode e e 48
2.6.14 -S: Compile to Assembler Code 48
2.6.15 -Umacro: UndefineaMacro 48
2.6.16 -v:Verbose Compile e 49
2.6.17 -X:Strip Local Symbols L 49
2.6.18 --ADDRQUAL: Set Compiler Response to Memory Qualifier 49
2.6.19 --ASMLIST: Generate Assembler LSTFiles. 49
2.6.20 --CHECKSUM=start-endR@destination<, specs>: Calculate a check-

SUIML & v v oo et e e e e e e e e e 50
2.6.21 --CHIP=processor: Define Processor 50
2.6.22 --CHIPINFO: Display List of Supported Processors 50
2.6.23 --CMODE: Specify compatibility mode 51
2.6.24 --CODEOFFSET: Offset Program Code to Address 51
2.6.25 --CR=f1ile: Generate Cross Reference Listing 51
2.6.26 --DEBUGGER=type: Select Debugger Type 52
2.6.27 --DOUBLE=t ype: Select kind of Double Types 52
2.6.28 --ECHO: Echo command line before processing 52
2.6.29 --EMI=type: Select operating mode of the external memory interface (EMI) 52
2.6.30 --ERRATA=t ype: Specify to add or remove specific errata workarounds . . . 53

CONTENTS CONTENTS

2.7

2.6.31 --ERRFORMAT=format: Define Format for Compiler Messages 53
2.6.32 --ERRORS=number: Maximum Number of Errors 53
2.6.33 --FILL=opcode: Fill Unused Program Memory 53
2.6.34 --FLOAT=type: Select kind of Float Types 54
2.6.35 --GETOPTION=app, file: Get Command-line Options 54
2.6.36 --HELP<=option> DisplayHelp 54
2.6.37 --HTML: Generate HTML Debug Files 54
2.6.38 --IDE=type: Specify the IDE beingused 55
2.6.39 --LANG=language: Specify the Language for Messages 55
2.6.40 --MEMMAP=f1ile: Display MemoryMap 55
2.6.41 --MODE=mode: Choose Compiler Operating Mode 56
2.6.42 --MSGDISABLE=messagelist: Disable Warning Messages 56
2.6.43 --MSGFORMAT=format: Set Advisory Message Format 56
2.6.44 --NODEL: Do not Remove Temporary Files 56
2.6.45 --NOEXEC: Don’t Execute Compiler 56
2.6.46 --OBJDIR=dir: Specify a Directory for Intermediate Files 57
2.6.47 --0PT<=type>: Invoke Compiler Optimizations 57
2.6.48 --OUTDIR=path: Specify a Directory for Output Files 57
2.6.49 --0UTPUT=type: Specify Output File Type 58
2.6.50 --PASS1: CompiletoP-code 58
2.6.51 --PRE: Produce Preprocessed Source Code 58
2.6.52 --PROTO: Generate Prototypes 59
2.6.53 --RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges 60
2.6.54 --ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges . . . 61
2.6.55 --RUNTIME=type: Specify Runtime Environment 63
2.6.56 --SCANDEP: Scan for Dependencies 63
2.6.57 --SERIAL=hexcodeladdress: Store a Value at this Program Memory
Address L 63
2.6.58 --SETOPTION=app, file: Set The Command-line Options for Application 63
2.6.59 --SHROUD: Obfuscate p-code Files 64
2.6.60 --STRICT: Strict ANSI Conformance 64
2.6.61 --SUMMARY=type: Select Memory Summary Output Type 64
2.6.62 --TIME: Report time taken for each phase of build process 64
2.6.63 --VER: Display The Compiler’s Version Information 65
2.6.64 —-WARN=level: Set WarningLevel 65
2.6.65 --WARNFORMAT=format: Set Warning Message Format 65
MPLAB IDE v8 Universal Toolsuite Equivalents 66
2.7.1 DirectoriesTab e 66
272 CompilerTab e 66

CONTENTS CONTENTS

273 LinkerTab 69

274 Global Tabo e 72

2.8 MPLAB X Universal Toolsuite Equivalents 73
2.8.1 Compiler Category v v v v i e e e e e e 74

2.8. 1.1 MeSSages e e e e e 74

2.8.1.2 Address Qualifiers 74

2.8.1.3 Operation 75

2.8.1.4 Preprocessor i i e e e e e 75

2.8.1.5 Optimization o 76

2.8.2 Linker Category i e e e e e 77
2.82.1 Data 77

2.822 Report e e e e 78

2.823 Runtime 79

2824 Code e 79

2.8.2.5 Additional 79

3 C Language Features 83
3.1 ANSIStandardIssues e 83
3.1.1 Divergence from the ANSI C Standard 83

3.1.2 Implementation-defined behaviour 83

3.1.3 Non-ANSIOperations vt 84

3.1.4 Cl18 Compatibility e 84

3.2 Processor-related Features o oL, 85
3.2.1 Processor SUpport e e 85

322 DeviceHeaderFiles 86

323 Stack . ..o 86

324 Configuration Fuses 86

325 IDLocations v v it e e e 88

3.2.6 Bitlnstructions e 88

3.2.7 EEPROM and Flash Runtime Access 89
327.1 EEPROM Access 89

3272 FlashAccess o i i e 90

32.8 UsingSFRsFromCCode 91
3281 Multi-byte SFRs 92

3.3 Supported Data Types and Variables 93
3.3.1 Radix Specifiersand Constants 93

3.3.2 BitDataTypesand Variables 95

3.3.3 Using Bit-Addressable Registers 96

3.3.4 8-Bit Integer Data Types and Variables 96

CONTENTS CONTENTS

34

3.5

3.6

335 16-Bitlnteger DataTypes 96
33.6 24-BitInteger Data Types 97
3.3.7 32-Bit Integer Data Types and Variables 97
3.3.8 Floating Point Types and Variables 98
3.3.9 Structures and Unions oL oo 99
3.39.1 Bitfieldsin Structures oL 99
3.3.9.2 Structure and Union Qualifiers 100
3.3.10 Standard Type Qualifiers 101
3.3.10.1 Const and Volatile Type Qualifiers 101
3.3.11 Special Type Qualifiers 102
3.3.11.1 Persistent Type Qualifier 102
3.3.11.2 Near Type Qualifier 103
33.11.3 FarType Qualifier 103
3.3.12 Pointer Types o v v i e e e e e e e e e 104
3.3.12.1 Combining Type Qualifiers and Pointers 104
3.3.12.2 DataPointers 106
33.123 PointerstoConst. oL 107
3.3.12.4 Pointers to Both Memory Spaces 108
3.3.12.5 Function Pointers L. 109
Storage Class and Object Placement 110
34.1 Local Variables e 110
34.1.1 AutoVariables 110
34.1.2 Static Variables 114
342 Absolute Variables 115
3.4.2.1 Absolute Variables in Data Memory 115
3.4.2.2 Absolute Variables in Program Memory 115
343 Objectsin Program Space 116
344 Dynamic Memory Allocation 116
345 MemoryModels e 116
Functions e 116
3.5.1 Absolute Functions e 116
3.5.2 External Functions 117
3.5.3 Function Argument Passing Lo, 117
354 FunctionReturn Values L oL 119
3.54.1 Structure Return Values 119
OPETatOrS . . v v v v v e 119
3.6.1 Integral Promotion 119
3.6.2 Shifts applied to integral types oL oo 121
3.6.3 Division and modulus with integral types 121

CONTENTS CONTENTS

3.7
3.8

3.9

3.10

3.11

3.12

3.13

Register Usage o o i it 122
Psects L 123
3.8.1 Compiler-generated Psects, 123
3.8.1.1 Program SpacePsects 124
3.8.1.2 DataSpacePsects 125
Interrupt HandlinginC Lo o 126
39.1 Imterrupt Functions 126
39.2 Context Switching e 127
3921 Context Saving e e e e 127
3922 ContextRetrieval 128
3.9.3 EnablingInterrupts L 128
39.4 Function Duplication 128
3.9.4.1 Disabling Duplication, 129
39.5 ImnterruptRegisters 130
Mixing Cand Assembly Code 131
3.10.1 External Assembly Language Functions 131
3.10.2 #asm, #endasmand asm() 134
3.10.3 Accessing C objects from within Assembly Code 135
3.10.3.1 Accessing special function register names from assembler 136
3.10.4 Interaction between Assemblyand CCode 138
3.104.1 Absolute Psects 138
3.10.42 Undefined Symbols 139
Preprocessing 139
3.11.1 CLanguage COomments v v v v v v v v it e e e e e e 140
3.11.2 Preprocessor Directives L oL 140
3.11.3 Predefined Macros 140
3.11.4 PragmaDirectives o i e e e 143
3.11.4.1 The #pragma printf_check Directive 143
3.11.4.2 The #pragma regsused Directive 145
3.11.43 The #pragma switch Directive 146
3.11.4.4 The #pragma inline Directive 147
3.11.4.5 The #pragma interrupt_level Directive 147
3.11.4.6 The #pragma warning Directive 147
Linking Programs 149
3.12.1 Replacing Library Modules 150
3.12.2 Signature Checking Lo 150
3.12.3 Linker-Defined Symbols oL, 152
Standard I/O Functions and Serial /O 152

CONTENTS CONTENTS
4 Macro Assembler 153
4.1 AssemblerUsage e 153
4.2 Assembler Options e e e e e e e e e e 154
4.3 HI-TECH C Assembly Language, 157
4.3.1 Assembler Format Deviations 157

432 Pre-defined Macros e e e 158

433 Statement Formats e 158

434 CharaCters o i i e e e e e e e e 158
4341 Delimiters e e e 159

4342 Special Characters v v v vt 159

435 Commentst e e e e e e e e e e e e e 159
4.3.5.1 Special Comment Strings 159

43.6 Constantst i e e e e e e e e e e e e e e e e e e e 160
4.3.6.1 Numeric Constants o v v v vt i 160

4.3.6.2 Character Constants and Strings 160

437 Identifiers 160
4.3.7.1 Significance of Identifiers 161

4.3.7.2 Assembler-Generated Identifiers 161

4373 LocationCounter v v v i it 161

43.7.4 Register Symbols oo 162

43.7.5 SymbolicLabels oL 162

4.3.8 EXPressions i it e e e e e e e 162

439 Program Sections e 164
4.3.10 Assembler Directives e e e e e e 165
4.3.10.1 GLOBAL e 165

43.10.2 END e 165

4.3.103 PSECT e e e e 167

43,104 ORG e e e 169

43.10.5 EQU e e e 169

4.3.10.6 SET e e 169

4.3.10.7 DB e e e 170

43.10.8 DW e e e e e e 170

43.10.9 DS . .. e e e 170

4.3.10.10 DABS 170

43.10.11 ENCALL e e e e e 171

4.3.10.12 FNROOT e e e e e e 171

4.3.10.13 IF, ELSIF, ELSE and ENDIF 171

43.10.14 MACROand ENDM 172

43.10.15 LOCAL e e e 173

CONTENTS CONTENTS

10

43.10.16 ALIGN e e e 173

4.3.10.17 REPT e e 174

43.10.18 IRPandIRPC e 174

43.10.19 BANKSEL e 175

4.3.10.20 PROCESSOR e 175

4.3.10.21 SIGNAT e e e 176

43.11 AssemblerControls. 176
4.3.11.1 ASMOPT_OFF and ASMOPT_ ON. 176

43112 COND e e e 176

43.11.3 EXPAND e e 176

43.11.4 INCLUDE it 178

43.11.5 LIST e e e 178

43.11.6 NOCOND et st e 178

43.11.7 NOEXPAND e 178

43.11.8 NOLIST e e e e 179

43.11.9 NOXREF e 179

4311.10 PAGE e 179

431111 STACK e e e 179

43.11.12 SUBTITLE i i e e 179

43 1113 TITLE e e e e e e 179

43.11.14 XREF e 179

44 Assembly ListFiles e 180
441 General Format 180
442 Function Information 181
4.4.3 Pointer Reference Graph oo 181
444 CallGraph e 183
445 Call Graph Critical Paths 185
Linker and Ultilities 187
5.1 Introduction e e e e 187
5.2 Relocationand Psects e e 187
5.3 Program SeCtions i i e e e e 188
54 Local Psects e e e e e e e e e e e 188
5.5 Global Symbols e 188
5.6 Linkandload addresses e e 189
57 Operation e e e e e 189
5.7.1 Numbers inlinkeroptions 190
5.7.2 -Aclass=low-high,... e e e e e e 191
573 -Cx oo e e e e 191

CONTENTS CONTENTS

574 -Cpsect=class i 191
5775 -Dclass=delta e 191
5.7.6 -Dsymfile e e e e e e 191
577 -Eerrfile e e e e e 192
57.8 -F oo 192
5.7.9 -Gspec e e e e 192
5.7.10 -Hsymfile o e e e e e e e e 193
57.11 -Hasymfile o e 193
5712 -Jerrcount e e e e e e e 193
STA3 =K oo 193
ST04 -1 Lo 193
5705 -Loo o 193
57.16 -LM .« o L e 194
57107 -Mmapfileo e e e e e e e e 194
57.18 -N,-Nsand-Nc e 194
5.7.19 -Ooutfile e e 194
5720 -Pspeco e e e 194
S5T21 -Qprocessor. e e e e e e e e e e e e e e 196
5722 =S 196
5.7.23 -Sclass=limit[, bound] 196
5.7.24 -Usymbol e e e e e e e 196
5725 -Navmap e e e e e e e 197
5726 -Wnumo e 197
ST2T =X o 197
S5T28 -Z . 197
5.8 InvokingtheLinker e 197
59 MapFiles 198
59.1 Generation e 198
592 ContentS e e e 198
5.9.2.1 General Information oL 199
5.9.2.2 Psect Information listed by Module 200

5.9.2.3 Psect Information listedby Class 201

5924 SegmentListing 202

59.25 Unused AddressRanges 202

59.2.6 SymbolTable 203

5.10 Librarian L. e e 204
5.10.1 TheLibrary Format 204
5.10.2 Usingthe Librarian L0, 204
5.10.3 Exampleso e e e e e e 205

11

CONTENTS CONTENTS

12

5.11

5.12

5.13

5.14

5.10.4 Supplying Arguments 206
5.10.5 Listing Format 206
5.10.6 Ordering of Libraries i 206
5.10.7 Error Messages ot i i e e e 207
Objtohex e 207
5.11.1 Checksum Specifications 207
Cref . . . 209
5.12.1 -Fprefix o 209
5.12.2 -Hheading e 210
5123 -Llen o e 210
5.12.4 -Ooutfile e e 210
5125 -Pwidth e 210
5.12.6 -Sstoplisto e e e e e 210
SA2.7 Xprefix . ..o e e e e e e e e 210
Cromwell 211
5.13.1 -Pname[,architecture] 211
5032 N o 211
5133 =D oo 213
5134 -C o 213
5135 -F o e 213
5136 -OKey e 213
537 -IKey .o 213
538 <L o o e 213
5139 -E .« . e 213
SA3.10-B . o o 214
SAZAL-M . oo 214
SA312-V oo 214
Hexmate e 214
5.14.1 Hexmate Command Line Options 215

5.14.1.1 specifications,filename.hex 215

50412 +Prefix 217

5.14.1.3 -ADDRESSING 217

5.14.14 -BREAK o 217

51415 -CK . oo 218

5.14.1.6 -FILLo o e e 218

514177 -FIND 220

5.14.1.8 -FIND...DELETE 221

5.14.19 -FIND..,REPLACE 221

5.14.1.10 -FORMAT o oo e 221

CONTENTS CONTENTS
514111 -HELP e e e 222

514112 -LOGFILE e 222

5.14.1.13 -MASK e 223

504114 -Ofile o o e e 223

5.14.1.15 -SERIAL e 223

5.14.1.16 -SIZE e e 224

5.14.1.17 -STRING e 224

5.14.1.18 -STRPACK e e e e 225

A Library Functions 227
_CONFIG e e e e e 228
__EEPROM_DATA e 229
_IDLOC . . . e e e e e 230
_DELAY . . e e 231
_DELAY 3 . . e e e e e e 232
ABS . e e e 233
ACOS . e e e 234
ASCTIME e e e e 235
ASIN e e e e e 237
ASSERT e e e e 238
ATAN e e e e 239
ATAN2 . e e e 240
ATOF . e e e e e 241
ATOL . e e e e 242
ATOL . . e e e e 243
BSEARCH e e e e 244
CEIL e e e e 246
CGETS . . . e e e 247
CLRWDT e e e e e 249
CONFIG_READ e e e e s e e e 250
COS . e e e e 252
COSH e 253
CPUTS . . . e e e e 254
CTIME e e e 255
device_id_read e e e e e 256
DI . e e 258
DIV . e e e e 260
EEPROM_READ e e e e 261
EVAL_POLY e e e e 263

CONTENTS CONTENTS

14

EXP oot 264
FABS o o o e 265
FLASH . o oo e e e e e 266
FMOD . o o oo e e e e e 267
FLOOR . o . o oo e e e e e e e 268
FREXP . o oo oo e e e e 269
GETCH . o o oo e e e e e 270
GETCHAR . . o o o oo e e e e 271
GETS .« o o o e e e e e 272
GMTIME . . . o o oo e e e e e 273
IDLOC_READ . . . o o oot e e e e e e e 275
ISALNUM . o oo e e e e e e e 277
ISDIG . o v oo e e e e e 279
ITOA o o e e e e e e 280
LABS .« o o o e e 281
LDEXP . o oo o e e 282
LDIV o ot e e e 283
LOCALTIME . .« oot e e e e e 284
LOG .« o o v e e e e 286
LONGIMP . . o o oo e e e e e e 287
LTOA '« o v o e e e e e 289
MEMOCMP . . o oo e e e e e 290
MEMMOVE .« o oot e e e e e 292
MKTIME . . o o oo e e e e e e 293
MODF . . o o e e e e e 295
NOP © o o e e e e 296
OS_TSLEEP . . o o o oo e e e e 297
POW . o o e e e e e e 298
PRINTE . o o oo e e e e e e e 299
PUTCH . o oo oo e e e e e e e 302
PUTCHAR . . o o oo o e e e e e 303
PUTS o o v e e e e e e e e 305
QSORT .« o o o e e e e 306
RAND . .« o oo e e e e e 308
READTIMER . .« oo oo e e e e e 310
RESET . o oot e e e e e e 311
ROUND . .« o oo oo e e e e e 312
SETIMP . o o oo oo e e e e e 315
SIN o o 317

CONTENTS CONTENTS

SLEEP e e 318
SQRT . . e e e e 319
SRAND . . . e e 320
STRCAT e e e e e e e e 321
STRCHR e e 322
STRCMP . . . e e e e 324
STRCPY . . . e e 326
STRCSPN . . . e e e 327
STRLEN e e 328
STRNCAT e e e e e e e e e 329
STRNCMP e e 331
STRNCPY . . . e e e 333
STRPBRK e e 335
STRRCHR e e e e e e 336
STRSPN . . . e e e 337
STRSTR e e e 338
STRTOD e e e 339
STRTOL o e e e e e e e e e e 341
STRTOK e e e 343
TAN . e e e e 345
TIME . . . e e 346
TOLOWER e e e e e 348
TRUNC . . . e e e 349
UDIV . e e e e e 350
ULDIV . . e e 351
UNGETCH e e e e e e e e e 352
UTOA . . . e e 353
VA_START e e e 354
WRITETIMER e e e e e e e 356
XTOL . . e e e e e e 357
B Error and Warning Messages 359
L o e e e e e 359
138 e e 367
184 . e e e e e 373
226, e e e e e e 381
208, e e e e e 390
5 1 396
7 O 404

CONTENTS

CONTENTS

398 L
44300
A8T7...
595... L
608... . ..
720... oo
TO4...
817... o o
860... . ..
923...
982...

C Chip Information

Index

16

List of Tables

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
33
34
3.5
3.6
3.7
39

3.12

PICCI8 inputfiletypes i e 22
Supportlanguages e e e e e e e 37
Messaging environment variables Lo 38
Messaging placeholders L. 39
Compiler Responses to Memory Qualifiers. 49
Compatibility modes e e e e 51
Supported Double Types e e e e 52
Supported Float Types o o 54
Supported IDEs 55
Supported languages Lo 55
Optimization Options ittt e e 57
Output file formats oL 58
Runtime environment suboptions oL L. 62
Memory Summary Suboptions Lo oL 65
Basicdatatypes e e e e e e e 93
Radix formats e 94
Floating-point formats L 98
Floating-point format example IEEE 754 98
Integral division L. 121
Registers Used by the Compiler 122
Preprocessor directives Lo e e 144
Pragmadirectives Lo e 145
Valid register names e e 146
SWItCh types o o o o e e e e e e e e e e e 146
Supported standard I/O functions o oL oo 152

17

LIST OF TABLES LIST OF TABLES

18

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.1
52
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11

C.1
C.1
C.1
C.1
C.1
C.1
C.1

ASPIC18 command-line options 154
ASPIC18 statement formats e 159
ASPIC18 numbersandbases o 160
ASPICI8 operators v v vt e e e e e e e 163
ASPIC18 assembler directives Lo 166
PSECT flags o 167
PICI8 assemblercontrols e 177
LIST control OPtONS v v v v o o e e e e e e e e e e e e e e e e e 178
Linker command-lineoptions 189
Linker command-lineoptions 190
Librarian command-line options e 205
Librarian key letter commands Lo 205
OBJTOHEX command-lineoptions 208
CREF command-lineoptions 209
CROMWELL fOrmat types ¢ v v v v v v e et e e e e e e e e e e e e e 211
CROMWELL command-line options v v v v v v i ittt 212
-P option architecture arguments for COFF fileoutput. 212
Hexmate command-line options 216
Hexmate Checksum Algorithm Selection 219
INHX types used in -FORMAT option 222
Devices supported by HI-TECH C Compiler for PICISMCUs 507
Devices supported by HI-TECH C Compiler for PICI8 MCUs 508
Devices supported by HI-TECH C Compiler for PICI8 MCUs 509
Devices supported by HI-TECH C Compiler for PICIS MCUs 510
Devices supported by HI-TECH C Compiler for PICIS MCUs 511
Devices supported by HI-TECH C Compiler for PICIS MCUs 512
Devices supported by HI-TECH C Compiler for PICIS MCUs 513

Chapter 1

Introduction

1.1 Typographic conventions

Different fonts and styles are used throughout this manual to indicate special words or text. Com-
puter prompts, responses and filenames will be printed in constant-spaced type. When the
filename is the name of a standard header file, the name will be enclosed in angle brackets, e.g.
<stdio.h>. These header files can be found in the INCLUDE directory of your distribution.

Samples of code, C keywords or types, assembler instructions and labels will also be printed in
a constant-space type. Assembler code is printed in a font similar to that used by C code.

Particularly useful points and new terms will be emphasized using italicized type. When part of
a term requires substitution, that part should be printed in the appropriate font, but in italics. For
example: #include <filename.h>.

19

Typographic conventions Introduction

20

Chapter 2

PICC18 Command-line Driver

PICC18 is the driver invoked from the command line to perform all aspects of compilation, including
C code generation, assembly and link steps. It is the recommended way to use the compiler as it
hides the complexity of all the internal applications used in the compilation process and provides a
consistent interface for all compilation steps.

This chapter describes the steps the driver takes during compilation, files that the driver can
accept and produce, as well as the command-line options that control the compiler’s operation.

WHAT IS “THE COMPILER”? Throughout this manual, the term “the compiler” is
used to refer to either all, or some subset of, the collection of applications that form the
HI-TECH C Compiler for PIC18 MCUs package. Often it is not important to know, for
example, whether an action is performed by the parser or code generator application,
and it is sufficient to say it was performed by “the compiler”.

It is also reasonable for “the compiler” to refer to the command-line driver (or just
“driver”), PICC18, as this is the application executed to invoke the compilation process.
Following this view, “compiler options” should be considered command-line driver op-
tions, unless otherwise specified in this manual.

Similarly “compilation” refers to all, or some part of, the steps involved in generating
source code into an executable binary image.

21

Invoking the Compiler PICC18 Command-line Driver

Table 2.1: PICC18 input file types

File Type Meaning
.C C source file
.pl p-code file
.1lpp p-code library file
.as Assembler source file
.obj Relocatable object code file
.1lib Relocatable object library file
.hex Intel HEX file

2.1 Invoking the Compiler

This chapter looks at how to use PICC18 as well as the tasks that it and the internal applications
perform during compilation.
PICC18 has the following basic command format:

PICC18 [options] files [libraries]

It is conventional to supply options (identified by a leading dash “-” or double dash “-") before
the filenames, although this is not mandatory.

The formats of the options are discussed below in Section 2.6, and a detailed description of each
option follows.

The files may be any mixture of C and assembler source files, and precompiled intermediate
files, such as relocatable object (.obj) files or p-code (.pl) files. The order of the files is not
important, except that it may affect the order in which code or data appears in memory, and may
affect the name of some of the output files.

Libraries is a list of either object code or p-code library files that will be searched by the
linker. The -1 option, see Section 2.6.7, can also be used to specify library files to search.

pPICC18 distinguishes source files, intermediate files and library files solely by the file type or
extension. Recognized file types are listed in Table 2.1. This means, for example, that an assembler
file must always have a .as extension. Alphabetic case of the extension is not important from the
compiler’s point of view.

MODULES AND SOURCE FILES: A C source file is a file on disk that contains all or
part of a program. C source files are initially passed to the preprocessor by the driver.

A module is the output of the preprocessor, for a given source file, after inclusion of
any header files (or other source files) which are specified by #include preprocessor

22

PICC18 Command-line Driver Invoking the Compiler

directives. These modules are then passed to the remainder of the compiler applications.
Thus, a module may consist of several source and header files. A module is also often
referred to as a translation unit. These terms can also be applied to assembly files, as
they too can include other header and source files.

Some of the compiler’s output files contain project-wide information and are not directly associated
with any one particular input file, e.g. the map file. If the names of these project-wide files are not
specified on the command line, the basename of these files is derived from the first C source file
listed on the command line. If there are no files of this type being compiled, the name is based on
the first input file (regardless of type) on the command line. Throughout this manual, the basename
of this file will be called the project name.

Most IDEs use project files whose names are user-specified. Typically the names of project-wide
files, such as map files, are named after the project, however check the manual for the IDE you are
using for more details.

2.1.1 Long Command Lines

The PICC18 driver is capable of processing command lines exceeding any operating system limita-
tion. To do this, the driver may be passed options via a command file. The command file is read by
using the @ symbol which should be immediately followed (i.e. no intermediate space character) by
the name of the file containing the command line arguments.

The file may contain blank lines, which are simply skipped by the driver. The command-line
arguments may be placed over several lines by using a space and backslash character for all non-
blank lines, except for the last line.

The use of a command file means that compiler options and project filenames can be stored along
with the project, making them more easily accessible and permanently recorded for future use.

TUTORIAL

USING COMMAND FILES A command file xyz.cmd is constructed with your favorite
text editor and contains both the options and file names that are required to compile your
project as follows:

——chip=18F242 -m \

--opt=all -g \

main.c isr.c

After it is saved, the compiler may be invoked with the command:

PICCI18 @xyz.cmd

23

The Compilation Sequence PICC18 Command-line Driver

Figure 2.1: Flow diagram of the initial compilation sequence

c -p1 as .obj
Ipp lib

cPP | | TIPRE | |.pre
P1 --PASS1 pi

code I I Lol as
generator
__ - D
dst fl 77 ASMLIST {assemble} ----------- €l .obj

2.2 The Compilation Sequence

p1cc18 will check each file argument and perform appropriate actions on each file. The entire
compilation sequence can be thought of as the initial sequence up to the link stage, and the final
sequence which takes in the link step and any post link steps required.

Graphically the compilation steps up to the link stage are illustrated in Figure 2.1. This diagram
shows all possible input files along the top; intermediate and transitional files, along the right side;
and useful compiler output files along the left. Generated files are shown along with the options that
are used to generate and preserve these. All the files shown on the right, can be generated and fed to
the compiler in a subsequent compile step; those on the left are used for debug purposes and cannot
be used as an input to any subsequent compilation.

The individual compiler applications are shown as boxes. The C preprocessor, CPP, and parser,
P1, have been grouped together for clarity.

The thin, multi-arrowed lines indicate the flow of multiple files — one for each file being pro-
cessed by the revel ant application. The thick single-arrowed lines indicate a single file for the project
being compiled. Thus, for example, when using the —-PASS1 driver option, the parser produces one
.pl file for each C source file that is being compiled as part of the project, but the code generator
produces only one .as file from all .c, .pl and . 1pp input files which it is passed.

Dotted lines indicate a process that may require an option to create or preserve the indicated file.

24

PICC18 Command-line Driver The Compilation Sequence

Figure 2.2: Flow diagram of the final compilation sequence

5 —--NODEL 5
map e T { HLINK } ,,,,,,,,,,,, .
[OBJTOHEX]

N\

[HEXMATE]
!

debug —[CROMWELL]

The link and post-link steps are graphically illustrated in Figure 2.2.

This diagram shows .hex files as additional input file type not considered in the initial compi-
lation sequence. These files can be merged into the .hex file generated from the other input files in
the project by an application called HEXMATE. See Section 5.14 for more information on this utility.

The output of the linker is a single absolute object file, called 1.0b7j, that can be preserved by
using the ——NODEL driver option. Without this option, this temporary file is used to generate an
output file (e.g. a HEX file) and files used for debugging by development tools (e.g. COFF files)
before it is deleted. The file 1.0b7j can be used as the input to OBJTOHEX if running this application
manually, but it cannot be passed to the driver as an input file as it absolute and cannot be further
processed.

2.2.1 Single-step Compilation

The command-line driver, PICC18, can compile any mix of input files in a single step. All source
files will be re-compiled regardless of whether they have been changes since that last time a compi-
lation was performed.

Unless otherwise specified, a default output file and debug file are produced. All intermedi-
ate files (.pl and .obj) remain after compilation has completed, but all other transitional files are
deleted, unless you use the —-NODEL option which preserves all generated files. Note some generated
files may be in a temporary directory not associated with your project and use a pseudo-randomly

25

The Compilation Sequence PICC18 Command-line Driver

generated filename.

TUTORIAL

SINGLE STEP COMPILATION The files, main.c, io.c,mdef.as, sprt.obj,a_sb.lib
and c_sb. 1pp are to be compiled. To perform this in a single step, the following com-
mand line can be used as a starting point for the project development.

PICC18 --chip=18F242 main.c io.c mdef.as sprt.obj a_sb.lib c_sb.lpp

This will run the C pre-processor then the parser with main.c as input, and then again
for io.c producing two p-code files. These two files, in addition to the library file
c_sb. lpp, are passed to the code generator producing a single temporary assembler file
output. The assembler is then executed and is passed the output of the code generator.
It is run again with mdef . as, producing two relocatable object files. The linker is then
executed, passing in the assembler output files in addition to sprt.obj and the library
file a_sb.1lib. The output is a single absolute object file, 1.0b7j. This is then passed to
the appropriate post-link utility applications to generate the specified output file format
and debugging files. All temporary files, including 1.ob37, are then deleted. The inter-
mediate files: p-code and relocatable object files, are not deleted. This tutorial does not
consider the runtime startup code that is automatically generated by the driver.

2.2.2 Generating Intermediate Files

The HI-TECH C Compiler for PIC18 MCUs version compiler uses two types of intermediate files.
For C source files, the p-code file (.pl file) is used as the intermediate file. For assembler source
files, the relocatable object file (.ob7 file) is used.

You may wish to generate intermediate files for several reasons, but the most likely will be if
you are using an IDE or make system that allows an incremental build of the project. The advantage
of a incremental build is that only the source files that have been modified since the last build need
to be recompiled before again running the final link step. This dependency checking may result in
reduced compilation times, particularly if there are a large number of source files.

You may also wish to generate intermediate files to construct your own library files, although
PICC18 is capable of constructing libraries in a single step, so this is typically not necessary. See
Section 2.6.49 for more information.

Intermediate files may also assist with debugging a project that fails to work as expected.

Do not use the project base name as the base name for assembly source files if you are using
MPLAB IDE v8. The intermediate file produced from the C files will use the project name to form
the name of the intermediate object file. This would be the same name chosen by the IDE for the
intermediate object file generated for the assembly source file.

26

PICC18 Command-line Driver The Compilation Sequence

If a multi-step compilation is required the recommended compile sequence is as follows.
e Compile all modified C source files to p-code files using the ——PASS1 driver option

e Compile all modified assembler source files to relocatable object files using the -C driver
option

o Compile all p-code and relocatable object files into a single output object file

The final step not only involves the link stage, but also code generation of all the p-code files. In
effect, the code generator performs some of the tasks normally performed by the linker. Any user-
specified (non standard) libraries also need to be passed to the compiler during the final step. This is
the incremental build sequence used by MPLAB IDE.

TUTORIAL

MULTI-STEP COMPILATION The files in the previous example are to be compiled
using a multi-step compilation. The following could be used.

PICC18 --chip=18F242 --passl main.c

PICC18 --chip=18F242 --passl io.c

PICC18 —-chip=18F242 -c mdef.as

PICC18 --chip=18F242 main.pl io.pl mdef.obj sprt.obj c_sb.lpp a_sb.lib

If using a make system with incremental builds, only those source files that have changed
since the last build need the first compilation step performed again, so not all of the first
three steps need be executed.

If is important to note that the code generator needs to compile all p-code or p-code library files in
the one step. Thus, if the -—PASS1 option is not used (or —-PRE is not used), all C source files, and
any p-code libraries, must be built together in the one command.

If a compilation is performed, and the source file that contains main () is not present in the list
of C source files, an undefined symbol error for _main will be produced by the code generator. If the
file that contains the definition for main () is present, but it is a subset of the C source files making
up a project that is being compiled, the code generator will not be able to see the entire C program
and this will defeat most of the optimization techniques employed by the code generator.

There may be multi-step compilation methods employed that lead to compiler errors as a result
of the above restrictions, for example you cannot have an C function compiled into a p-code library
that is called only from assembler code.

2.2.3 Special Processing

There are several special steps that take place during compilation.

27

Runtime Files PICC18 Command-line Driver

2.2.3.1 Printf check

An extra execution of the code generator is performed for prior to the actual code generation phase.
This pass is part of the process by which the printf library function is customized, see Section 2.3.4
for more details.

2.2.3.2 Assembly Code Requirements

After pre-processing and parsing of any C source files, but before code generation of these files, the
compiler assembles any assembly source files to relocatable object files. These object files, together
with any object files specified on the command line, are scanned by the compiler driver and certain
information from these files are collated and passed to the code generator. Several actions are taken
based on this information. See Section 3.10.4.

The driver instructs the code generator to preserve any C variables which map to symbols which
are used, but not defined, in the assembly/object code. This allows variables to be defined in C
code, and only every referenced in assembly code. Normally such C variables would be removed
as the code generator would consider them to be used (from the C perspective). Specifically, the
C variables are automatically qualified as being volatile which is sufficient to prevent the code
generator making this optimization.

The driver also takes note of any absolute psects (viz. use the abs and ovrld PSECT directive
flags) in the assembly/object code. The memory occupied by the psects is removed from the available
memory ranges passes to the code generator and linker. This information ensures that this memory
is not allocated to any C resources.

2.3 Runtime Files

In addition to the input files specified on the command line by the user, there are also compiler-
generated source files and pre-compiled library files which might be compiled into the project by the
driver. These are:

e Library files;

e The runtime startup module;
e The powerup routine; and

e The printf routine.

Strictly speaking, the powerup routine is neither compiler-generated source, nor a library routine. It
is fully defined by the user, however as it is very closely associated with the runtime startup module,
it is discussed with the other runtime files in the following sections.

28

PICC18 Command-line Driver Runtime Files

By default, libraries appropriate for the selected driver options are automatically passed to the
code generator and linker. Although individual library functions or routines will be linked in once
referenced in C code, the compiler still requires the inclusion of the appropriate header file for the
library function that is being used. See the appropriate library function section in Chapter A for the
header file that should be used.

2.3.1 Library Files

By default, PICC18 will search the LIB directory of the compiler distribution for p-code library files,
which are then passed to the code generator. These library files typically contain:

e The C standard library functions

e Routines implicitly called by the code generator

Chip-specific peripherals functions

Chip-specific memory functions

These library files are always scanned after scanning any user-specified libraries passed to the driver
on the command line, thus allowing library routines to be easily replaced with user-defined alterna-
tives. See Section 3.12.1.

The C standard libraries and libraries of implicitly-called routines can be omitted from the project
by disabling the c1ib suboption of ——RUNTIME. 2.6.55. For example:

-—RUNTIME=default,-clib

If these libraries are excluded from the project then calls to any routine, or access of any variable,
that is defined in the omitted library files will result in an error from the linker. The user must provide
alternative libraries or source files containing definitions for any routine or symbol accessed by the
project.

Do not confuse the actual library (. 1pp or .1ib) files and the header (.h) files. Both
are part of a library package, but the library files contain precompiled code, typically
functions and variable definitions; the header files provide declarations (as opposed
to definitions) for functions, variables and types in the library files, as well as other
preprocessor macros. PICC18 will always link in all the library files associated with the
C standard library (unless you have used an option to prevent this), however with user-
defined library packages, the inclusion of a header does not imply that the corresponding
library file(s) will be searched.

29

Runtime Files PICC18 Command-line Driver

2.3.1.1 Standard Libraries

The C standard libraries contain a standardised collection of functions, such as string, math and
input/output routines. The range of these functions are described in Appendix A.

These libraries also contain C routines that are implicitly called by the compiler and which
typically perform tasks such as floating point operations or type conversions.

The standard library name format is std1lib-compat_mode-option.lpp, Where compat_mode
is the compatibility mode: htc or c18; and opt ion is any option that was used when building the
library, for example d32 for 32-bit doubles.

2.3.1.2 Utility Libraries

In addition to the C standard libraries, PICC18 automatically passes to the code generator a set of
p-code libraries which contain functions that are device dependent. Such routines may, for example,
access the EEPROM, or flash memory of the device.

The general form of the utility library names is picfamily-xp.lpp. The meaning of each
field is described by:

e The family name may be the same as a specific device name or be generic, e.g. pic18£4550
or picl8fxx31.

e The configuration digit, x, relates to errata information; each bit has the meaning:

— bit #0 is true for devices implementing EEDATA errata workaround for EEPROM reads.

— bit #1 is true for devices that implement additional NOPs when reading beyond program
space at -40C.

e The library type, p, is £ for flash libraries and e for eeprom libraries. The library extension is
always lpp.

2.3.1.3 Peripheral Libraries

HI-TECH C Compiler for PIC18 MCUs has support for the MPLAB C18 peripheral library API. A

native HI-TECH library is linked when the compatibility mode is the default setting (see 3.1.4), and

a C18 version of this library is linked if the compiler is being run in C18 compatibility mode. These

two libraries are functionally identical and conform to the same API, but differ in the source syntax.
These libraries are linked in by default. To prevent them from being searched, the -——RUNTIME=-plib

option must be used. See Section 2.6.55.

30

PICC18 Command-line Driver Runtime Files

2.3.2 Runtime Startup Code

A C program requires certain objects to be initialised and the processor to be in a particular state
before it can begin execution of its function main (). It is the job of the runtime startup code to
perform these tasks, specifically:

o Initialisation of global variables assigned a value when defined
e Clearing of non-initialised global variables

e General setup of registers or processor state

Rather than the traditional method of linking in a generic, precompiled routine, HI-TECH C Com-
piler for PIC18 MCUs uses a more efficient method which actually determines what runtime startup
code is required from the user’s program. It does this by performing an additional link step, the out-
put of which is used to determine the requirements of the program. From this information PICC18
then “writes” the assembler code which will perform the startup sequence.

Both the driver and code generator are involved in generating the runtime startup code. The
driver takes care of device setup and this code is placed into a separate assembly startup file. The
code generator handles initialization of the C environment, such as clearing uninitialized C variables
and copying initialized C variables. This code is output along with the rest of the C program.

The runtime startup code is generated automatically on every compilation. If required, the as-
sembler file which contains some of the runtime startup code can be deleted after compilation by
using the driver option:

--RUNTIME=default, -keep

If the startup module is kept, it will be called startup.as and will be located in the current working
directory. If you are using an IDE to perform the compilation the destination directory is dictated
by the IDE itself, however you may use the ——OUTDIR option to specify an explicit output directory
to the compiler. The code produced by the code generator will be shown in the assembly list file
associated with the project.

This is an automatic process which does not require any user interaction, however some aspects
of the runtime code can be controlled, if required, using the ——RUNTIME option. Section 2.6.55
describes the use of this option, and the following sections describes the functional aspects of the
code contained in this module and its effect on program operation.

If you require any special initialization to be performed immediately after reset, you should use
the powerup routine feature described later in Section 2.3.3.

31

Runtime Files PICC18 Command-line Driver

2.3.2.1 Initialization of Data psects

One job of the runtime startup code is ensure that any initialized variables contain their initial value
before the program begins execution. Initialized variables are those which are not auto objects and
which are assigned an initial value in their definition, for example input in the following example.

int input = 88;
void main(void) {

Such initialized objects have two components: their initial value stored in a psect destined for non-
volatile memory (i.e. placed in the HEX file), and space for the variable in RAM psect where the
variable will reside and be accessed during program execution.

The psects used for storing these components are described in 3.8.1.

The runtime startup code will copy all the blocks of initial values from program memory to RAM
so the variables will contain the correct values before main() is executed. This action can be omitted
by disabling the init suboption of —~—RUNTIME. For example:

--RUNTIME=default, -init
With this part of the runtime startup code absent, the contents of initialized variables will be unpre-
dictable when the program begins execution. Code relying on variables containing their initial value

will fail.

Since auto objects are dynamically created, they require code to be positioned in the
function in which they are defined to perform their initialization. It is also possible that
their initial value changes on each instance of the function. As a result, initialized auto
objects do not use the data psects and are not considered by the runtime startup code.

Variables whose contents should be preserved over a reset, or even power off, should be qualified
with persistent, see Section 3.3.11.1. Such variables are linked at a different area of memory and are
not altered by the runtime startup code in any way.

2.3.2.2 Clearing the Bss Psects

Those non-auto objects which are not initialized must be cleared before execution of the program
begins. This task is also performed by the runtime startup code.

Uninitialized variables are those which are not auto objects and which are not assigned a value
in their definition, for example output in the following example.

32

PICC18 Command-line Driver Runtime Files

int output;
void main(void) {

Such uninitialized objects will only require space to be reserved in RAM where they will reside and
be accessed during program execution (runtime).

The psects used for storing these components are described in Section 3.8.1 and typically have a
name based on the initialism “bss” (Block Started by Symbol).

The runtime startup code will clear all the memory location occupied by uninitialized variables
so they will contain zero before main() is executed.

Variables whose contents should be preserved over a reset should be qualified with persistent.
See Section 3.3.11.1 for more information. Such variables are linked at a different area of memory
and are not altered by the run- time startup code in any way.

The block clear of all the bss psects (including the memory allocated by the code generator) can
be omitted by disabling the clear suboption of ——RUNTIME. For example:

-—-RUNTIME=default,-clear

With this part of the runtime startup code absent, the contents of uninitialized variables will be
unpredictable when the program begins execution.

2.3.3 The Powerup Routine

Some hardware configurations require special initialization, often within the first few instruction
cycles after reset. To achieve this there is a hook to the reset vector provided via the powerup
routine.

This routine can be supplied in a user-defined assembler module that will be executed immedi-
ately after reset. An empty powerup routine is provided in the file powerup.as which is located
in the SOURCES directory of your compiler distribution. Refer to comments in this file for more
details.

The file should be copied to your working directory, modified and included into your project as
a source file. No special linker options or other code is required; the compiler will detect if you
have defined a powerup routine and will automatically use it, provided the code in this routine is
contained in a psect called powerup.

For correct operation (when using the default compiler-generated runtime startup code), the code
must contain at its end a GOTO instruction to the label called start. As with all user-defined assembly
code, it must take into consideration program memory paging and/or data memory banking, as well
as any applicable errata issues for the device you are using. See Section 2.6.30 for more information
on errata issues. The program’s entry point is already defined by the runtime startup code, so this
should not be specified in the powerup routine at the END directive (if used). See Section 4.3.10.2 for
more information on this assembler directive.

33

Runtime Files PICC18 Command-line Driver

2.3.4 The print£f Routine

The code associated with the printf function is not found in the library files. The printf function
is generated from a special C source file that is customized after analysis of the user’s C code. See
Appendix 359 for more information on the printf library function.

This template file is found in the LIB directory of the compiler distribution and is called doprnt . c.
It contains a minimal implementation of the printf function, but with the more advanced features
included as conditional code which can be utilized via preprocessor macros that are defined when it
is compiled.

The parser and code generator analyze the C source code, searching for calls to the print f func-
tion. For all calls, the placeholders that were specified in the print f format strings are collated to
produce a list of the desired functionality of the final function. The doprnt.c file is then prepro-
cessed with the those macros specified by the preliminary analysis, thus creating a custom printf
function for the project being compiled. After parsing, the p-code output derived from doprnt.c is
then combined with the remainder of the C program in the final code generation step.

TUTORIAL

CALLS TO PRINTF A program contains one call to print £, which looks like:

printf ("input is: $d”);

The compiler will note that only the $d placeholder is used and the doprnt module that is
linked into the program will only contain code that handles printing of decimal integers.
The code is latter changed and another call to printf is added. The new call looks like:
printf ("output is %6d”);

Now the compiler will detect that in addition there must be code present in the doprnt
module that handles integers printed to a specific width. The code that handles this flag
will be introduced into the doprnt module.

The size of the doprnt module will increase as more printf features are detected.

If the format string in a call to printf is not a string literal as in the tutorial, but is rather a pointer
to a string, then the compiler will not be able to reliably predict the printf usage, and so it forces a
more complete version of print f to be generated. However, even without being able to scan printf
placeholders, the compiler can still make certain assumptions regarding the usage of the function.
In particular, the compiler can look at the number and type of the additional arguments to printf
(those following the format string expression) to determine which placeholders could be valid. This
enables the size and complexity of the generated print f routine to be kept to a minimum.

TUTORIAL

PRINTF WITHOUT LITERAL FORMAT STRINGS If there is only one reference to
printf in a program and it appears as in the following code:

34

PICC18 Command-line Driver Debugging Information

void my_print (const char * mes) {
printf (mes);

}

the compiler cannot determine the exact format string, but can see that there are no
additional arguments to print f following the format string represented by mes. Thus,
the only valid format strings will not contain placeholders that print any arguments,
and a minimal version of print f will be generated and compiled. If the above code
was rewritten as:

void my_print (const char * mes, double val) {
printf (mes, val);

}

the compiler will detect that the argument being printed has double type, thus the only
valid placeholders would be those that print floating point types, for example %e, $f and
%g.

No aspect of this operation is user-controllable (other than by adjusting the calls to printf), how-
ever the actual printf code used by a program can be observed. If compiling a program using
printf, the driver will leave behind the pre-processed version of doprnt.c. This module, called
doprnt.pre in your working directory, will show the C code that will actually be contained in the
printf routine. As this code has been pre-processed, indentation and comments will have been
stripped out as part of the normal actions taken by the C pre-processor.

2.4 Debugging Information

Several driver options and output files allow development tools, such as HI-TIDE" or MPLAB®,
to perform source-level debugging of the output code.

The default behaviour of the PICC18 command is to produce a Microchip COFF and Intel HEX
output. If no output filename or type is specified, PICC18 will produce these files with the same base
name as the first source or object file specified on the command line. Table 2.12 shows the output
format options available with PICC18. The File Type column lists the filename extension which will
be used for the output file.

In addition to the options shown, the -0 option may be used to request generation of binary or
UBROF files. If you use the -0 option to specify an output filename with a .bin type, for example
—-Otest.bin, PICC18 will produce a binary file. Likewise, if you need to produce UBROF files,
you can use the -O option to specify an output file with type . ubr, for example -Otest . ubr.

35

Compiler Messages PICC18 Command-line Driver

2.5 Compiler Messages

All compiler applications, including the command-line driver, PICC18, use textual messages to
report feedback during the compilation process. A centralized messaging system is used to produce
the messages which allows a consistancy during all stages of the compilation process.

2.5.1 Messaging Overview

A message is referenced by a unique number which is passed to the alert system by the compiler
application that needs to convey the information. The message string corresponding to this number
is obtained from Message Description Files (MDF) which are stored in the DAT directory of the
compiler distribution.

When a message is requested by a compiler application, its number is looked up in the MDF
which corresponds to the currently selected language. The language of messages can be altered as
discussed in Section 2.5.2.

Once found, the alert system determines the message type that should be used to display the
message. There are several different message types which are described in Section 2.5.3. The default
type is stored in the MDF, however this can be overridden by the user, as described in Section 2.5.3.
The user is also able to set a threshold for warning message importance, so that only those which the
user considers significant will be displayed. In addition, messages with a particular number can be
disabled. Both of these methods are explained in Section 2.5.5.1.

Provided the message is enabled and it is not a warning messages that is below the warning
threshold, the message string will be displayed.

In addition to the actual message string, there are several other pieces of information that may
be displayed, such as the message number, the name of the file for which the message is applicable,
the file’s line number and the application that requested the message, etc.

If a message is being displayed as an error, a counter is incremented. After a certain number of
errors has been reached, compilation of the current module will cease. The default number of errors
that will cause this termination can be adjusted by using the -——ERRORS option, see Section 2.6.32.
This counter is reset after each compilation step of each module, thus specifying a maximum of five
errors will allow up to five errors from the parser, five from the code generator, five from the linker,
five from the driver, etc.

If a language other than English is selected, and the message cannot be found in the appropriate
non-English MDF, the alert system tries to find the message in the English MDF. If an English
message string is not present, a message similar to:

error/warning (*) generated, but no description available

where * indicates the message number that was generated, will be printed, otherwise the message in
the requested language will be displayed.

36

PICC18 Command-line Driver Compiler Messages

Table 2.2: Support languages
Language | MDF name
English en_msgs.txt
German de_msgs.txt
French fr_msgs.txt

2.5.2 Message Language

HI-TECH C Compiler for PIC18 MCUs Supports more than one language for displayed messages.
There is one MDF for each language supported.

The language used for messaging may be specified with each compile using the -—-LANG option,
see Section 2.6.39. Alternatively it may be set up in a more permanent manner by using the --LANG
option together with the —-SETUP option which will store the default language in either the reg-
istry, under Windows, or in a configuration file on other systems. On subsequent builds the default
language used will be that specified.

Table shows the MDF applicable for the currently supported languages.

2.5.3 Message Type

There are four types of message whose default behaviour is described below.

Advisory Messages convey information regarding a situation the compiler has encountered or some
action the compiler is about to take. The information is being displayed “for your interest”
and typically require no action to be taken.

Unless prevented by some driver option or another error message, the project will be linked
and the requested output file(s) will be generated.

Warning Messages indicate source code or some other situation that is valid, but which may lead
to runtime failure of the code. The code or situation that triggered the warning should be
investigated, however, compilation of the current module will continue, as will compilation of
any remaining modules.

Unless prevented by some driver option or another error message, the project will be linked
and the requested output file(s) will be generated.

Error Messages indicate source code that is illegal and that compilation of this code either cannot
or will not take place. Compilation will be attempted for the remaining source code in the
current module, but no additional modules will be compiled and the compilation process will
then conclude.

The requested output files will not be produced.

37

Compiler Messages PICC18 Command-line Driver

Table 2.3: Messaging environment variables

Variable Effect
HTC_MSG_FORMAT All advisory messages
HTC_WARN_FORMAT | All warning messages
HTC_ERR_FORMAT All error and fatal error messages

Fatal Error Messages indicate a situation that cannot allow compilation to proceed and which re-
quired the the compilation process to stop immediately.
The requested output files will not be produced.

2.5.4 Message Format

By default, messages are printed in the most useful human-readable format as possible. This format
can vary from one compiler application to another, since each application reports information about
different file formats. Some applications, for example the parser, are typically able to pinpoint the
area of interest down to a position on a particular line of C source code, whereas other applications,
such as the linker, can at best only indicate a module name and record number, which is less directly
associated with any particular line of code. Some messages relate to driver options which are in no
way associated with any source code.

There are several ways of changing the format in which message are displayed, which are dis-
cussed below.

The driver option -E (with or without a filename) alters the format of all displayed messages. See
Section 2.6.4. Using this option produces messages that are better suited to machine parsing, and
user-friendly. Typically each message is displayed on a single line. The general form of messages
produced with the -E option in force is:

filename line_number: (message number) message string (message type)

The -E option also has another effect. If it is being used, the driver first checks to see if special
environment variables have been set. If so, the format dictated by these variables are used as a
template for all messages produced by all compiler applications. The names of these variables are
given in Table 2.3.

The value of these environment variables are strings that are used as templates for the message
format. Printf-like placeholders can be placed within the string to allow the message format to be
customised. The placeholders and what they represent are indicated in Table 2.4.

If these options are used in a DOS batch file, two percent characters will need to be used
to specify the placeholders, as DOS interprets a single percent character as an argument
and will not pass this on to the compiler. For example:

38

PICC18 Command-line Driver Compiler Messages

Table 2.4: Messaging placeholders

Placeholder Replacement

%a application name

$c column number

% filename

$1 line number

%n message number

%s message string (from MDF)

--ERRFORMAT="file %%f: line %

o\

1"

The message environment variables, in turn, may be overridden by the driver options: ——-MSGFORMAT,
--WARNFORMAT and --ERRFORMAT, see Sections 2.6.31, 2.6.43 and 2.6.65. These options take a
string as their argument. The option strings are formatted, and can use the same placeholders, as
their variable counterparts.

TUT®RIAL

CHANGING MESSAGE FORMATS A project is compiled, but produces a warning from
the parser and an error from the linker. By default the following messages are displayed
when compiling.

main.c: main()

17: ip = &b;

~ (362) redundant "&" applied to array (warning)

(492) attempt to position absolute psect "text" is illegal

Notice that the format of the messages from the parser and linker differ since the parser
is able to identify the particular line of offending source code. The parser has indicated
the name of the file, indicated the function in which the warning is located, reproduced
the line of source code and highlighted the position at which the warning was first
detected, as well as show the actual warning message string.

The -E option is now used and the compiler issues the same messages, but in a new
format as dictated by the -E option. Now environment variables are set and no other
messaging driver options were specified so the default -E format is used.

main.c: 12: (362) redundant "&" applied to array (warning)
(492) attempt to position absolute psect "text" is illegal (error)

39

Compiler Messages PICC18 Command-line Driver

Notice that now all message follow a more uniform format and are displayed on a single
line.

The user now sets the environment variable HTC_WARN_FORMAT to be the following
string. (Under Windows, this can be performed via the Control Panel’s System panel.)
%a %n %1 %f %s

and the project recompiled. The following output will be displayed.

parser 362 12 main.c redundant "&" applied to array (492)
attempt to position absolute psect "text" is illegal (error)

Notice that the format of the warning was changed, but that of the error message was
not. The warning format now follows the specification of the environment variable. The
application name (parser) was substituted for the %a placeholder, the message number
(362) substituted the $n placeholder, etc.

The option ——~ERRFORMAT="%a %n %1 %f %s" is then added to the driver command
line and the following output is observed.

parser 362 12 main.c redundant "&" applied to array
linker 492 attempt to position absolute psect "text" is illegal

Note that now the warning and error formats have changed to that requested. For the
case of the linker error, there is no line number information so the replacement for this
placeholder is left blank.

2.5.5 Changing Message Behaviour

Both the attributes of individual messages and general settings for messaging system can be modified
during compilation. There are both driver command-line options and C pragmas that can be used to
achieve this.

2.5.5.1 Disabling Messages

Each warning message has a default number indicating a level of importance. This number is speci-
fied in the MDF and ranges from -9 to 9. The higher the number, the more important the warning.
Warning messages can be disabled by adjusting the warning level threshold using the ——~WARN
driver option, see Section 2.6.64. Any warnings whose level is below that of the current threshold
are not displayed. The default threshold is O which implies that only warnings with a warning level of
0 or higher will be displayed by default. The information in this option is propagated to all compiler
applications, so its effect will be observed during all stages of the compilation process.

40

PICC18 Command-line Driver PICC18 Driver Option Descriptions

Warnings may also be disabled by using the --MSGDISABLE option, see Section 2.6.42. This
option takes a comma-separated list of message numbers. Any warnings which are listed are disabled
and will never be issued, regardless of any warning level threshold in place. This option cannot be
used to disable error messages.

Some warning messages can also be disabled by using the warning disable pragma. This
pragma will only affect warnings that are produced by either parser or the code generator, i.e. errors
directly associated with C code. See Section 3.11.4.6 for more information on this pragma.

Error messages can also be disabled, however a slighty more verbose form of the command is
required to confirm the action required. To specify an error message number in the ——MSGDISABLE
command, the number must be followed by :0ff to ensure that it is actually disabled. For example:
--MSGDISABLE=195:0ff will disable error number 195.

Disabling error or warning messages in no way fixes any potential problems reported
by the message. Always use caution when exercising this option.

2.5.5.2 Changing Message Types

It is also possible to change the type of some messages. This is only possible by the use of the
warning pragma and only affects messages generated by the parser or code generator. See Section
3.11.4.6 for more information on this pragma.

2.6 PICCI18 Driver Option Descriptions

Most aspects of the compilation can be controlled using the command-line driver, PICC18. The
driver will configure and execute all required applications, such as the code generator, assembler
and linker.

PICC18 recognizes the compiler options listed in the table below and which are described in the
sections that follow. The case of the options is not important, however command shells in UNIX-
based operating systems are case sensitive when it comes to names of files.

2.6.1 Option Formats

9

All single letter options are identified by a leading dash character, “-”, e.g. —-C. Some single letter
options specify an additional data field which follows the option name immediately and without any
whitespace, e.g. -Ddebug.

41

PICC18 Driver Option Descriptions PICC18 Command-line Driver

Multi-letter, or word, options have two leading dash characters, e.g. ——ASMLIST. (Because of the
double dash, you can determine that the option --ASMLIST, for example, is not a -A option followed
by the argument SMLIST.)

Some of these options define suboptions which typically appear as a comma-separated list fol-
lowing an equal character, =, e.g. ——OUTPUT=hex, cof. The exact format of the options varies and
are described in detail in the following sections.

Some commonly used suboptions include default, which represent the default specification
that would be used if this option was absent altogether; all, which indicates that all the available
suboptions should be enabled as if they had each been listed; and none, which indicates that all
suboptions should be disabled. Some suboptions may be prefixed with a plus character, +, to indicate
that they are in addition to the other suboptions present, or a minus character “-”, to indicate that
they should be excluded. In the following sections, angle brackets, < >, are used to indicate optional
parts of the command.

See the —-HELP option, Section 2.6.36, for more information about options and suboptions.

2.6.2 —C: Compile to Object File

The -C option is used to halt compilation after generating a relocatable object file. This option
is frequently used when compiling assembly source files using a “make” utility. Use of this option
when only a subset of all the C source files in a project are being compiled will result in an error from
the code generator. See Section 2.2.2 for more information on generating and using intermediate
files.

2.6.3 -Dmacro: Define Macro

The -D option is used to define a preprocessor macro on the command line, exactly as if it had
been defined using a #define directive in the source code. This option may take one of two forms,
-Dmacro which is equivalent to:

#define macro 1

placed at the top of each module compiled using this option, or ~-Dmacro=text which is equivalent
to:

#define macro text
where text is the textual substitution required. Thus, the command:
PICC18 --CHIP=18F242 -Ddebug -Dbuffers=10 test.c

will compile test . c with macros defined exactly as if the C source code had included the directives:

42

PICC18 Command-line Driver PICC18 Driver Option Descriptions

#define debug 1
#define buffers 10

See Section 2.7 for use of this option in MPLAB IDE.

2.64 -Efile: Redirect Compiler Errors to a File

This option has two purposes. The first is to change the format of displayed messages. The second
is to optionally allow messages to be directed to a file as some editors do not allow the standard
command line redirection facilities to be used when invoking the compiler.

The general form of messages produced with the -E option in force is:

filename line_number: (message number) message string (message type)

If a filename is specified immediately after -E, it is treated as the name of a file to which all
messages (errors, warnings etc) will be printed. For example, to compile x. c and redirect all errors
to x.err, use the command:

PICC18 --CHIP=18F242 -Ex.err x.cC

The -E option also allows errors to be appended to an existing file by specifying an addition charac-
ter, +, at the start of the error filename, for example:

PICC18 --CHIP=18F242 -Etx.err y.c

If you wish to compile several files and combine all of the errors generated into a single text file, use
the -E option to create the file then use -E+ when compiling all the other source files. For example,
to compile a number of files with all errors combined into a file called project.err, you could use
the -E option as follows:

PICC18 --CHIP=18F242 -Eproject.err -O --PASSl main.c
PICC18 --CHIP=18F242 -E+project.err -O --PASSl partl.c
PICC18 --CHIP=18F242 -E+project.err -C asmcode.as

Section 2.5 has more information regarding this option as well as an overview of the messaging
system and other related driver options.

2.6.5 -Gfile: Generate Source-level Symbol File

The -G option generates a source-level symbol file (i.e. a file which allows tools to determine which
line of source code is associated with machine code instructions, and determine which source-level
variable names correspond with areas of memory, etc.) for use with supported debuggers and simu-
lators such as MPLAB IDE. If no filename is given, the symbol file will have the same base name as

43

PICC18 Driver Option Descriptions PICC18 Command-line Driver

the project name (see Section 2.1), and an extension of . sym. For example the option -Gtest.sym
generates a symbol file called test . sym. Symbol files generated using the -G option include source-
level information for use with source-level debuggers.

Note that all source files for which source-level debugging is required should be compiled with
the -G option. The option is also required at the link stage, if this is performed separately. For
example:

PICC18 --CHIP=18F242 -G --PASSl test.c modulesl.c
PICC18 --CHIP=18F242 -Gtest.sym test.pl modulel.pl

The --IDE option, see Section 2.6.38 will typically enable the -G option.

2.6.6 -Ipath: Include Search Path

Use -1 to specify an additional directory to use when searching for header files which have been
included using the #include directive. The -I option can be used more than once if multiple
directories are to be searched.

The default include directory containing all standard header files is always searched even if no
-I option is present. The default search path is searched after any user-specified directories have
been searched. For example:

PICC18 --CHIP=18F242 -C -Ic:\include -Id:\myapp\include test.c

will search the directories c:\include and d:\myapp\include for any header files included into
the source code, then search the default include directory (the include directory where the compiler
was installed).

It is strongly advised not to use -I to add the compiler’s default include path, not only because
it is unnecessary but in the event that the build tool changes, the path specified here will be searched
prior to searching the new compiler’s default path.

This option has no effect for files that are included into assembly source using the INCLUDE
directive. See Section 4.3.11.4.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.7 -Llibrary: Scan Library

The -L option is used to specify additional libraries which are to be scanned by the linker and code
generator. Libraries specified using the -L option are scanned before any C standard libraries.

The argument to -L is a library keyword to which the prefix pic8 and other letters and digits, as
described in Section 2.3.1, are added. Both a p-code and object code library filename is generated

44

PICC18 Command-line Driver

PICC18 Driver Option Descriptions

and passed to the code generator and linker, respectively. The case of the string following the option
is important for environments where filenames are case sensitive.

Thus the option -Lt when compiling for a 18F452 will, for example, specify the library filenames
pic86l-t.lpp and pic861-t.lib. The option -Lxx will specify libraries called pic861-xx.lpp
and pic861-xx.1ib. All libraries must be located in the LIB subdirectory of the compiler installa-
tion directory.

If you wish the linker to scan libraries whose names do not follow the above naming conven-
tion or whose locations are not in the LIB subdirectory, simply include the libraries’ names on the
command line along with your source files.

2.6.8

The commonly-used PICC-18 Standard compiler options -L1, -Lf and -Lw should not
be used for altering the behaviour of the print f function. The library files correspond-
ing to these opptions are not provided with the PRO version of this compiler, and an
error will result if these options are used with creating these library sets. A custom
printf function is automatically generated by the compiler when required, as described
in section 2.3.4.

—-L-option: Adjust Linker Options Directly

The -1 driver option can also be used to specify an option which will be passed directly to the linker.

If -L is followed immediately by text starting with a dash character

7KL

, the text will be passed

directly to the linker without being interpreted by PICC18. For example, if the option -L-F00 is
specified, the ~-FOO option will be passed on to the linker. The linker will then process this option,
when, and if, it is invoked, and perform the appropriate function, or issue an error if the option is
invalid.

Take care with command-line options. The linker cannot interpret driver options; sim-
ilarly the command-line driver cannot interpret linker options. In most situations, it is
always the command-line driver, PICC18, that is being executed. If you need to add
alternate settings in the linker tab in an MPLAB Build options... dialogue, these
are the driver options (not linker options), but which are used by the driver to generate
the appropriate linker options during the linking process.

45

PICC18 Driver Option Descriptions

The -1 option is especially useful when linking code which contains non-standard program sections
(or psects), as may be the case if the program contains assembly code which contains user-defined
psects. Without this -L option, it would be necessary to invoke the linker manually to allow the

linker options to be adjusted.

One commonly used linker option is -N, which sorts the symbol table in the map file by address,

rather than by name. This would be passed to PICC18 as the option -L-N.

This option can also be used to replace default linker options: If the string starting from the first
character after the -L up to the first = character matches first part of a default linker option, then that

default linker option is replaced by the option specified by the -L.

If there are no characters following the first = character in the -L option, then any matching default
linker option will be deleted. For example: -L-pfirst= will remove any default linker option that
begins with the string -pfirst=. No warning is generated if such a default linker option cannot be

TUTORIAL

REPLACING DEFAULT LINKER OPTIONS In a particular project, the psect entry is
used, but the programmer needs to ensure that this psect is positioned above the address
800h. This can be achieved by adjusting the default linker option that positions this
psect. First, a map file is generated to determine how this psect is normally allocated
memory. The Linker command line: in the map file indicates that this psect is nor-
mally linked using the linker option:

-pentry=CODE

Which places entry anywhere in the memory defined by the CODE class. The program-
mer then re-links the project, but now using the driver option:

-L-pentry=CODE+800h

to ensure that the psect is placed above 800h. Another map file is generated and the
Linker command line: section is checked to ensure that the option was recieved and
executed by the linker. Next, the address of the psect entry is noted in the psect lists
that appear later in the map file. See Section 5.9 for more information on the contents
of the map file.

found.

46

TUTORIAL

ADDING AND DELETING DEFAULT LINKER OPTIONS The default linker options for
for a project links several psects in the following fashion.

-pone=600h, two, three

which links one at 600h, then follows this with two, then three. It has been decided
that the psects should be linked so that one follows two, which follows three, and

PICC18 Command-line Driver

PICC18 Command-line Driver PICC18 Driver Option Descriptions

that the highest address of one should be located at SFFh. This new arragement can be
specified issuing the following driver option:

-L-pthree=-600h, two, one

which creates passes the required linker options to the linker. The existing default option
is still present, so this must be removed by use the driver option:

-L-pone=

which will remove the existing option.

The default option that you are deleting or replacing must contain an equal character.

2.6.9 -Mfile: Generate Map File

The -M option is used to request the generation of a map file. The map is generated by the linker
an includes detailed information about where objects are located in memory, see Section 5.9 for
information regarding the content of map files.

If no filename is specified with the option, then the name of the map file will have the project
name, with the extension .map.

2.6.10 -Nsize: Identifier Length

This option is currently not implemented. The identifier size is fixed at 255, but can be changed to
31 by using the -—-STRICT option, see 2.6.60.

2.6.11 -Ofile: Specify Output File

This option allows the basename of the output file(s) to be specified. If no -0 option is given, the
output file(s) will be named after the first source or object file on the command line. The files
controlled are any produced by the linker or applications run subsequent to that, e.g. CROMWELL. So
for instance the HEX file, MAP file and SYM file are all controlled by the -0 option.

The -0 option can also change the directory in which the output file is located by including the
required path before the filename, e.g. -Oc:\project\output\first. This will then also specify
the output directory for any files produced by the linker or subsequently run applications. Any
relative paths specified are with respect to the current working directory.

Any extension supplied with the filename will be ignored. The name and path specified by the
-0 option will apply to all output files.

The options that specify MAP file creation (-, see 2.6.9), and SYM file creation (-G, see 2.6.5)
override any name or path information provided by -0 relevant to the MAP and SYM file.

47

PICC18 Driver Option Descriptions PICC18 Command-line Driver

To change the directory in which all output and intermediate files are written, use the ——OUTDIR
option, see Section 2.6.48. Note that if -0 specifies a path which is inconsistent with the path
specified in the -——OUTDIR option, this will result in an error.

2.6.12 -P: Preprocess Assembly Files

The -P option causes the assembler files to be preprocessed before they are assembled thus allowing
the use of preprocessor directives, such as #include, with assembler code. By default, assembler
files are not preprocessed.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.13 -Q: Quiet Mode

This option places the compiler in a quiet mode which suppresses the HI-TECH Software copyright
notice from being displayed.

2.6.14 -s: Compile to Assembler Code

The -S option stops compilation after generating an assembler source file. An assembler file will be
generated for each C source file passed on the command line. The command:

PICC18 --CHIP=18F242 -S test.c

will produce an assembler file called test.as which contains the code generated from test.c.
This option is particularly useful for checking function calling conventions and signature values
when attempting to write external assembly language routines.

The file produced by this option differs to that produced by the -~~ASMLIST option in that it does
not contain op-codes or addresses and it may be used as a source file and subsequently passed to the
assembler to be assembled.

2.6.15 -Umacro: Undefine a Macro

The -U option, the inverse of the -D option, is used to undefine predefined macros. This option takes
the form -Umacro. The option, -Udraft, for example, is equivalent to:

#undef draft

placed at the top of each module compiled using this option.
See Section 2.7 for use of this option in MPLAB IDE.

48

PICC18 Command-line Driver PICC18 Driver Option Descriptions

Table 2.5: Compiler Responses to Memory Qualifiers
Selection Response
require | The qualifiers will be honored. If they cannot be met, an error will be issued.
request | The qualifiers will be honored, if possible. No error will be generated if they cannot be followed
ignore The qualifiers will be ignored and code compiled as if they were not used.
reject If the qualifiers are encountered, an error will be immediately generated.

2.6.16 -V: Verbose Compile

The -V is the verbose option. The compiler will display the command lines used to invoke each of
the compiler applications or compiler passes. Displayed will be the name of the compiler application
being executed, plus all the command-line arguments to this application. This option may be useful
for determining the exact linker options if you need to directly invoke the HLINK command.

If this option is used twice, it will display the full path to each compiler application as well as the
full command line arguments. This would be useful to ensure that the correct compiler installation
is being executed if there is more than one installed.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.17 -X: Strip Local Symbols

The option -X strips local symbols from any files compiled, assembled or linked. Only global sym-
bols will remain in any object files or symbol files produced.

2.6.18 ——-ADDRQUAL: Set Compiler Response to Memory Qualifier

The --ADDRQUAL option indicates the compiler’s response to some of the non-standard memory
qualifiers in C source code.

By default these qualifiers are ignored, i.e. they are accepted without error, but have no effect.
Using this option allows these qualifiers to be interpreted differently by the compiler.

The qualifiers affected by this option are the near and far. The bankx qualifiers (bank0, bank1,
bank2 etc.), are not currently affected by this option.

The suboptions are detailed in Table 2.5.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.19 —-ASMLIST: Generate Assembler .LST Files

The —-ASMLIST option tells PICC18 to generate one or more assembler listing file for each C and
assembly source module being compiled.

49

PICC18 Driver Option Descriptions PICC18 Command-line Driver

In the case of code being assembled that was originally C source, the list file shows both the
original C code and the corresponding assembly code generated by the code generator. For both
C and assembly source code, a line number, the binary op-codes and addresses are shown. If the
assembler optimizer is enabled (default operation) the list file may differ from the original assem-
bly source code. The assembler optimizer may also simpify some expression and remove some
assembler directives from the listing file for clarity, although they are processed in the usual way.

Provided the link stage has successfully concluded, the listing file will be updated by the linker
so that it contains absolute addresses and symbol values. Thus you may use the assembler listing file
to determine the position of, and exact op codes corresponding to, instructions.

2.6.20 —--CHECKSUM=start-end@Rdestination<, specs>: Calculate a
checksum

This option will perform a checksum over the address range specified and store the result at the
destination address specified. Additional specifications can be appended as a comma separated list
to this option. Such specifications are:

,width=n select the byte-width of the checksum result. A negative width will store the result in
little-endian byte order. Result widths from one to four bytes are permitted.

,offset=nnnn An initial value or offset to be added to this checksum.

,algorithm=n Select one of the checksum algorithms implemented in hexmate. The selectable al-
gorithms are described in Table 5.10.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.21 --CHIP=processor: Define Processor

This option is the only option that is mandatory. It specifies the target processor for the compilation.
To see a list of supported processors that can be used with this option, use the ——CHIP INFO option
described in Section 2.6.22.
See also Section 4.3.10.20 for information on setting the target processor from within assembly
files.

2.6.22 —-—-CHIPINFO: Display List of Supported Processors

The --CHIPINFO option simply displays a list of processors the compiler supports. The names listed
are those chips defined in the chipinfo file and which may be used with the -~-CHIP option.

50

PICC18 Command-line Driver PICC18 Driver Option Descriptions

Table 2.6: Compatibility modes
Mode Operation
htc HI-TECH C (default)
cl8 MPLAB C18 traditional
clg8e | MPLAB C18 Extended

2.6.23 —-CMODE: Specify compatibility mode

This option allows the compiler to be run in a special compatibility mode. The modes are given in
Table 2.6. This option will be automatically specified with HI-TECH C Compiler for PIC18 MCUs
when the mcc18 compatibility driver is employed. It is not recommended that this option be used
explicitly. See 3.1.4 for more information on building legacy projects.

2.6.24 —-—CODEOFFSET: Offset Program Code to Address

In some circumstances, such as bootloaders, it is necessary to shift the program image to an alter-
native address. This option is used to specify a base address for the program code image. With this
option, all code psects (including interrupt vectors and constant data) that the linker would ordinarily
control the location of, will be adjusted.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.25 --CR=file: Generate Cross Reference Listing

The --CR option will produce a cross reference listing. If the £1i1e argument is omitted, the “raw”
cross reference information will be left in a temporary file, leaving the user to run the CREF utility.
If a filename is supplied, for example —-CR=test.crf, PICC18 will invoke CREF to process the
cross reference information into the listing file, in this case test.crf. If multiple source files are
to be included in the cross reference listing, all must be compiled and linked with the one PICC18
command. For example, to generate a cross reference listing which includes the source modules
main.c, modulel.c and nvram.c, compile and link using the command:

PICC18 --CHIP=18F242 --CR=main.crf main.c modulel.c nvram.c

Thus this option can not be used when using any compilation process that compiles each source file
separately using the -C or ——PASS1 options. Such is the case for most IDEs, including MPLAB IDE,
and makefiles.

51

PICC18 Driver Option Descriptions PICC18 Command-line Driver

Table 2.7: Supported Double Types

Suboption Type
24 Truncated IEEE754 24-bit doubles
32 IEEE754 32-bit doubles

2.6.26 —-DEBUGGER=type: Select Debugger Type

This option is intended for use for compatibility with debuggers. PICC18supports the Microchip
ICD2 debugger and using this option will configure the compiler to conform to the requirements of
the ICD2 (reserving memory addresses, etc.). For example:

PICC18 --CHIP=18F242 --DEBUGGER=1icd2 main.c

Basic debugging with Microchip REALICE, ICD3, PICKIT2 and PICKIT3 are also supported
when --debugger=realice, -—debugger=icd3, --debugger=pickit2 or -—-debugger=pickit3
is used.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.27 --DOUBLE=type: Select kind of Double Types

This option allows the kind of double types to be selected. By default the compiler will choose the
truncated IEEE754 24-bit implementation for double types. With this option, this can be changed to
32-bits.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.28 ——ECHO: Echo command line before processing

Use of this option will result in the command line being echoed to the stderr stream before com-
pilation is commenced. Each token of the command line will be printed on a separate line and will
appear in the order in which they are placed on the command line.

2.6.29 --EMI=type: Select operating mode of the external memory inter-
face (EMI)

Those PIC18 devices which can interface with an external memory are capable of operating in sev-
eral modes. The mode selected is determined by the type of memory available and the connection
method used. The interface can operate in 16-bit modes; word write and byte select mode or in
an 8-bit mode: byte write mode. Valid types that can be specified to this option are: wordwrite,

52

PICC18 Command-line Driver PICC18 Driver Option Descriptions

byteselect or bytewrite. Which mode is selected will affect the code generated when writing
to the external data. In word write mode, dummy reads and writes may be added to ensure that an
even number of bytes are always written. In byte select or byte write modes dummy reads and writes
are not generated and can result in more efficient code. Note that this option does not in any way
pre-configure the device for operation in the selected mode.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.30 —-—-ERRATA=type: Specify to add or remove specific errata workarounds

This option allows specification of the types of software workarounds to apply in order to overcome
documented silicon errata issues. The chip configuration file nominates a default set of errata issues
that apply to each device. To compile for an ideal chip, that is, apply no additional workarounds use
--ERRATA=none.

2.6.31 --ERRFORMAT=format: Define Format for Compiler Messages

If the ——ERRFORMAT option is not used, the default behaviour of the compiler is to display any
errors in a “human readable” format line. This standard format is perfectly acceptable to a person
reading the error output, but is not generally usable with environments which support compiler error
handling. The following sections indicate how this option may be used in such situations.

This option allows the exact format of printed error messages to be specified using special place-
holders embedded within a message template. See Section 2.5 for full details of the messaging
system employed by PICC18.

This section is also applicable to the -——WARNFORMAT and --MSGFORMAT options which adjust the
format of warning and advisory messages, respectively.

See Section 2.6.39 for the appropriate option to change the message language.

2.6.32 ——-ERRORS=number: Maximum Number of Errors

This option sets the maximum number of errors each compiler application, as well as the driver, will
display before stopping. By default, up to 20 error messages will be displayed. See Section 2.5 for
full details of the messaging system employed by PICC138.

2.6.33 —--FILL=opcode: Fill Unused Program Memory

This option allows specification of a hexadecimal opcode that can be used to fill all unused program
memory locations with a known code sequence. See the HEXMATE Section for details of the option
format and features. Multi-byte codes should be entered in little endian byte order.

See Section 2.7 for use of this option in MPLAB IDE.

53

PICC18 Driver Option Descriptions PICC18 Command-line Driver

Table 2.8: Supported Float Types

Suboption Type

double Size of float matches size of double type
24 Truncated IEEE754 24-bit float

32 IEEE754 32-bit float

2.6.34 —--FLOAT=type: Select kind of Float Types

This option allows the kind of float types to be selected. By default the compiler will choose the
truncated IEEE754 24-bit implementation for float types. With this option, this can be changed to
32-bits.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.35 —--GETOPTION=app, file: Get Command-line Options

This option is used to retrieve the command line options which are used for named compiler appli-
cation. The options are then saved into the given file. This option is not required for most projects.

2.6.36 —-—-HELP<=option>: Display Help

The --HELP option displays information on the PICC18 compiler options. To find out more about a
particular option, use the option’s name as a parameter. For example:

PICC18 --help=warn

This will display more detailed information about the —-WARN option, the available suboptions, and
which suboptions are enabled by default.

2.6.37 —--HTML: Generate HTML Debug Files

This option will generate a series of HTML files that can be used to explore the compilation results
of the current project. The files are located in a directory called html, placed in the output directory.
The top level file (that can be opened with your favourite web browser) is called index.html. Use
this option at all stages of compilation.

The index page is a graphical representation of the compilation process. Each file icon is click-
able and will open with the contents of that file (even intermediate files, and binary files open in
a human-readable form), and each application icon can also be clicked to show a page containing
information about that application’s invocation and results.

54

PICC18 Command-line Driver PICC18 Driver Option Descriptions

Table 2.9: Supported IDEs

Suboption IDE
hitide HI-TECH Software’s HI-TIDE
mplab Microchip’s MPLAB

Table 2.10: Supported languages
Suboption Language
en, english English
fr, french, francais | French
de, german, deutsch | German

The list of all preprocessor macros (preprocessor icon) and the graphical memory usage map
(Linker icon) provide information that is not otherwise readily accessible.
See Section 2.7 for use of this option in MPLAB IDE.

2.6.38 —-IDE=type: Specify the IDE being used

This option is used to automatically configure the compiler for use by the named Integrated Devel-
opment Environment (IDE). The supported IDE’s are shown in Table 2.9.

2.6.39 --LANG=language: Specify the Language for Messages

This option allows the compiler to be configured to produce error, warning and some advisory mes-
sages in languages other than English. English is the default language and some messages are only
ever printed in English regardless of the language specified with this option.

Table 2.10 shows those langauges currently supported.

See Section 2.5 for full details of the messaging system employed by PICC18.

2.640 --MEMMAP=file: Display Memory Map

This option will display a memory map for the specified map file. This option is seldom required,
but would be useful if the linker is being driven explicitly, i.e. instead of in the normal way through
the driver. This command would display the memory summary which is normally produced at the
end of compilation by the driver.

55

PICC18 Driver Option Descriptions PICC18 Command-line Driver

2.6.41 --MODE=mode: Choose Compiler Operating Mode

This option selects the basic operating mode of the compiler. The available types are pro and lite.
A compiler operating in PRO mode uses full optimization and produces the smallest code size.
Standard mode uses limited optimizations, and LITE mode only uses a minimum optimization level
and will produce relatively large code.

Only those modes permitted by the compiler license status will be accepted. For example if you
have purchased a Standard compiler license, that compiler may be run in Standard or Lite mode, but
not the PRO mode.

See Section 2.7 for use of this option in MPLAB IDE.

2.642 --MSGDISABLE=messagelist: Disable Warning Messages

This option allows warning or advisory messages to be disabled during compilation of all modules
within the project, and during all stages of compilation. Warning mesasges can also be disabled
using pragma directives. For full information on the compiler’s messaging system, see Section 2.5.

The messagelist is a comma-separated list of warning numbers that are to be disabled. If the
number of an error is specified, it will be ignored by this option. If the message list is specified as 0,
then all warnings are disabled.

2.6.43 —--MSGFORMAT=format: Set Advisory Message Format

This option sets the format of advisory messages produced by the compiler. See Section 2.5 for full
information.

2.6.44 —--NODEL: Do not Remove Temporary Files

Specifying --NODEL when building will instruct PICC18not to remove the intermediate and tempo-
rary files that were created during the build process.

2.6.45 --NOEXEC: Don’t Execute Compiler

The —-NOEXEC option causes the compiler to go through all the compilation steps, but without ac-
tually performing any compilation or producing any output. This may be useful when used in con-
junction with the -V (verbose) option in order to see all of the command lines the compiler uses to
drive the compiler applications.

56

PICC18 Command-line Driver PICC18 Driver Option Descriptions

Table 2.11: Optimization Options

Option name Function

1..9 Select global optimization level (1 through 9)

asm Select optimizations of assembly derived from C source

asmfile Select optimizations of assembly source files

debug Favour accurate debugging over optimization

space Favour optimization of code for space over speed (default) (PRO mode only)
speed Favour optimization of code for speed over space (PRO mode only)

all Enable all compiler optimizations (also includes space)

none Do not use any compiler optimziations

2.6.46 ——OBJDIR=dir: Specify a Directory for Intermediate Files

This option allows a directory to be nominated in for PICC18to locate its intermediate files. Interme-
diate file include .pre and .pl file for C source, and also includes .obj and . 1st files for assembly
source and the compiler-generated runtime startup source file.

If this option is omitted, intermediate files will be created in the current working directory. This
option will not set the location of output files, instead use -~—OUTDIR. See 2.6.48 and 2.6.11 for more
information.

2.6.47 --0OPT<=type>: Invoke Compiler Optimizations

The --OPT option allows control of all the compiler optimizers. By default, without this option,
all optimizations are enabled. The options --OPT or —-OPT=all also enable all optimizations. Op-
timizations may be disabled by using --OPT=none, or individual optimizers may be controlled,
e.g. ——OPT=asm will only enable some assembler optimizations. Table 2.11 lists the available opti-
mization types. The optimizations that are controlled through specifying a level 1 through 9 affect
register-allocation optimization during the code generation stage. The level selected is commonly
referred to as the global optimization level, however this has virtally no effect on compilation for
PIC18 devices.
See Section 2.7 for use of this option in MPLAB IDE.

2.6.48 —-—-OUTDIR=path: Specify a Directory for Output Files

This option allows a directory to be nominated in for PICC18to locate its output files. If this option
is omitted, output files will be created in the current working directory. This option will not set the
location of intermediate files, instead use ——OBJDIR. See 2.6.46 and 2.6.11 for more information.

57

PICC18 Driver Option Descriptions PICC18 Command-line Driver

Table 2.12: Output file formats

Type tag File format

1lib Library File

lpp P-code library

intel Intel HEX

inhx032 | Intel HEX with upper address initialization of zero
tek Tektronic

aahex American Automation symbolic HEX file
mot Motorola S19 HEX file

ubrof UBROF format

bin Binary file

mcof Microchip PIC COFF

cof Common Object File Format

cod Bytecraft COD file format

elf ELF/DWAREF file format

2.6.49 --OUTPUT=type: Specify Output File Type

This option allows the type of the output file(s) to be specified. If no ——OUTPUT option is specified,
the output file’s name will be derived from the first source or object file specified on the command
line.

The available output file format are shown in Table 2.12. More than one output format may be
specified by supplying a comma-separated list of tags. Those output file types which specify library
formats stop the compilation process before the final stages of compilation are executed. Hence
specifying an output file format list containing, e.g. 1ib or all will over-ride the non-library output
types, and only the library file will be created.

2.6.50 —--PAsSS1l: Compile to P-code
The --PASS1 option is used to generate a p-code intermediate files (.p1 file) from the parser, then
stop compilation. Such a file needs to be generated if creating a p-code library file.

2.6.51 --PRE: Produce Preprocessed Source Code

The --PRE option is used to generate preprocessed C source files with an extension .pre. This may
be useful to ensure that preprocessor macros have expanded to what you think they should. Use
of this option can also create C source files which do not require any separate header files. This is
useful when sending files for technical support.

58

PICC18 Command-line Driver PICC18 Driver Option Descriptions

If you wish to see the preprocessed source for the printf family of functions, do not use this
option. The source for this function is customised by the compiler, but only after the code generator
has scanned the project for printf usage. Thus, as the —PRE option stops compilation after the
preprocessor stage, the code generator will not execute and no printf code will be processed. If this
option is omitted, the preprocessed source for print f will be retained in the file doprnt.pre.

If you wish to see the preprocessed source for the printf family of functions, do not use this
option. The source for this function is customised by the compiler, but only after the code generator
has scanned the project for printf usage. Thus, as the —PRE option stops compilation after the
preprocessor stage, the code generator will not execute and no printf code will be processed. If this
option is omitted, the preprocessed source for printf will be retained in the file doprnt .pre.

2.6.52 --PROTO: Generate Prototypes

The --PROTO option is used to generate .pro files containing both ANSI and K&R style function
declarations for all functions within the specified source files. Each .pro file produced will have
the same base name as the corresponding source file. Prototype files contain both ANSI C-style
prototypes and old-style C function declarations within conditional compilation blocks.

The extern declarations from each .pro file should be edited into a global header file which is
included in all the source files comprising a project. The .pro files may also contain static decla-
rations for functions which are local to a source file. These static declarations should be edited into
the start of the source file. To demonstrate the operation of the -~~PROTO option, enter the following
source code as file test.c:

#include <stdio.h>
add(argl, arg2)
int * argl;

int * argl;

{

return *argl + *arg2;

void printlist(int * list, int count)
{
while (count--)
printf("sd ", *list++);
putchar (“\n’");

If compiled with the command:

59

PICC18 Driver Option Descriptions PICC18 Command-line Driver

PICC18 —--CHIP=18F242 --PROTO test.c

PICCI18 will produce test .pro containing the following declarations which may then be edited as
necessary:

/* Prototypes from test.c */

/* extern functions - include these in a header file */
#if PROTOTYPES

extern int add(int *, int *);

extern void printlist(int *, int);

#else /* PROTOTYPES */

extern int add();

extern void printlist();

#endif /* PROTOTYPES */

2.6.53 —--RAM=lo-hi,<lo-hi, ...>: Specify Additional RAM Ranges

This option is used to specify memory, in addition to any RAM specified in the chipinfo file, which
should be treated as available RAM space. Strictly speaking, this option specifies the areas of mem-
ory that may be used by writable (RAM-based) objects, and not necessarily those areas of memory
which contain physical RAM. The output that will be placed in the ranges specified by this option
are typically variables that a program defines.

Some chips have an area of RAM that can be remapped in terms of its location in the memory
space. This, along with any fixed RAM memory defined in the chipinfo file, are grouped an made
available for RAM-based objects.

For example, to specify an additional range of memory to that present on-chip, use:

--RAM=default, +100-1ff
for example. To only use an external range and ignore any on-chip memory, use:
--RAM=0-ff

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chipinfo file. To do this supply a range prefixed with a minus character, -, for example:

--RAM=default,-100-103

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 103h
for allocation of RAM objects.

60

PICC18 Command-line Driver PICC18 Driver Option Descriptions

This option is also used to specify RAM for far objects on PIC18 devices. These objects are
stored in the PIC18 extended memory. Any additional memory specified with this option whose
address is above the on-chip program memory is assumed to be extended memory implemented as
RAM.

For example, to indicate that RAM has been implemented in the extended memory space at
addresses 0x20000 to 0x20fff, use the following option.

--RAM=default,+20000-20fff

See Section 2.7 for use of this option in MPLAB IDE.

2.6.54 —--ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges

This option is used to specify memory, in addition to any ROM specified in the chip configuration
file, which should be treated as available ROM space. Strictly speaking, this option specifies the
areas of memory that may be used by read-only (ROM-based) objects, and not necessarily those
areas of memory which contain physical ROM. The output that will be placed in the ranges specified
by this option are typically executable code and any data variables that are qualified as const.

When producing code that may be downloaded into a system via a bootloader the destination
memory may indeed be some sort of (volatile) RAM. To only use on-chip ROM memory, this option
is not required. For example, to specify an additional range of memory to that on-chip, use:

--ROM=default,+100-2ff
for example. To only use an external range and ignore any on-chip memory, use:
--ROM=100-2ff

This option may also be used to reserve memory ranges already defined as on-chip memory in the
chip configuration file. To do this supply a range prefixed with a minus character, -, for example:

--ROM=default,-100-1ff

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 1ffh for
allocation of ROM objects.
See Section 2.7 for use of this option in MPLAB IDE.

61

PICC18 Driver Option Descriptions

PICC18 Command-line Driver

Table 2.13: Runtime environment suboptions

Suboption Controls On (+) implies
init The code present in the startup mod- | The idata, ibigdata and
ule that copies the idata, ibigdata and | ifardata psects’ ROM image is
ifardata psects’ ROM-image to RAM. copied into RAM.
clib The inclusion of library files into the output | Library files are linked into the
code by the linker. output.
clear The code present in the startup module that | The bss, bigbss, rbss and
clears the bss, bigbss, rbss and farbss | farbss psects are cleared.
psects.
config Program unspecified configuration words | Unspecified configuration words
with a default value will have a default value pro-
grammed.
download Conditioning of the Intel hex file for use
with bootloaders. Data records in the Intel hex file
are padded out to 16 byte lengths
and will align on 16 byte bound-
aries. Startup code will not as-
sume reset values in certain reg-
isters.
keep Whether the start-up module source file is | The start-up module is not
deleted after compilation. deleted.

no_startup

Whether the startup module is linked in
with user-defined code.

The start-up module is generated
and linked into the program.

stackwarn) The stack depth is monitored at
Checking the depth of the stack used. compiled time and a warning will
be produced if a potential stack
overflow is detected.
plib Compiler links the Microchip compatible | Compiler links the Microchip

peripheral libraries. Other than <htc.h>
no other header files need to be included
to use the functions in these libraries. By
default this option is not set.

compatible peripheral libraries.

62

PICC18 Command-line Driver PICC18 Driver Option Descriptions

2.6.55 --RUNTIME=type: Specify Runtime Environment

The --RUNTIME option is used to control what is included as part of the runtime environment. The
runtime environment encapsulates any code that is present at runtime which has not been defined by
the user, instead supplied by the compiler, typically as library code.

All runtime features are enabled by default and this option is not required for normal compilation.
The usable suboptions include those shown in Table 2.13.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.56 ——SCANDEP: Scan for Dependencies

When this option is used, a .dep (dependency) file is generated. The dependency file lists those
files on which the source file is dependant. Dependencies result when one file is #included into
another.

2.6.57 --SERIAL=hexcode@address: Store a Value at this Program Mem-
ory Address

This option allows a hexadecimal code to be stored at a particular address in program memory. A
typical application for this option might be to position a serial number in program memory. The
byte-width of data to store is determined by the byte-width of the hexcode parameter in the option.

Alabel __serial0 is defined by the runtime startup code that marks the position of the hexadec-
imal code. This symbol may be referenced by C or assembly code in the usual way.

For example, to store the one byte value, 0, at program memory address 1000h, use the option
--SERIAL=00@1000. Use the option -—SERIAL=00000000Q@1000 to store the same value as a
four byte quantity. This option is functionally identical to the corresponding hexmate option. For
more detailed information and advanced controls that can be used with this option, refer to Section
5.14.1.15 of this manual.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.58 ——-SETOPTION=app, file: Set The Command-line Options for Ap-
plication

This option is used to supply alternative command line options for the named application when com-
piling. The app component specifies the application that will recieve the new options. The file
component specifies the name of the file that contains the additional options that will be passed to
the application. This option is not required for most projects. If specifying more than one option to
a component, each option must be entered on a new line in the option file.

63

PICC18 Driver Option Descriptions PICC18 Command-line Driver

This option can also be used to remove an application from the build sequence. If the £ile param-
eter is specified as off, execution of the named application will be skipped. In most cases this is
not desirable as almost all applications are critical to the success of the build process. Disabling a
critical application will result in catastrophic failure. However it is permissible to skip a non-critical
application such as clist or hexmate if the final results are not reliant on their function.

2.6.59 —--SHROUD: Obfuscate p-code Files

This option should be used in situations where either p-code files or p-code libraries are to be dis-
tributed and are built from confidential source code.

C comments, which are normally included into these files, as well as line numbers and variable
name will be removed or obfuscated so that the original source code cannot be reconstructed from
distributed files.

2.6.60 —-STRICT: Strict ANSI Conformance

The --STRICT option is used to enable strict ANSI conformance of all special keywords. HI-
TECH C supports various special keywords (for example the persistent type qualifier). If the
--STRICT option is used, these keywords are changed to include two underscore characters at
the beginning of the keyword (e.g. __persistent) so as to strictly conform to the ANSI stan-
dard. Be warned that use of this option may cause problems with some standard header files (e.g.
<intrpt.h>).

2.6.61 --SUMMARY=type: Select Memory Summary Output Type

Use this option to select the type of memory summary that is displayed after compilation. By default,
or if the mem suboption is selected, a memory summary is shown. This shows the total memory usage
for all memory spaces.

A psect summary may be shown by enabling the psect suboption. This shows individual psects,
after they have been grouped by the linker, and the memory ranges they cover. Table 2.14 shows
what summary types are available.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.62 —--TIME: Report time taken for each phase of build process

Adding --TIME when building generate a summary which shows how much time each stage of the
build process took to complete.

64

PICC18 Command-line Driver PICC18 Driver Option Descriptions

Table 2.14: Memory Summary Suboptions

Suboption Controls On (+) implies
psect Summary of psect usage. A summary of psect names and
the addresses they were linked at
will be shown.
mem General summary of memory used. A concise summary of memory
used will be shown.
class Summary of class usage. A summary of all classes in each
memory space will be shown.
hex Summary of address used within the hex | A summary of addresses and hex
file. files which make up the final out-
put file will be shown.
file Whether summary information is shown | Summary information will be
on the screen or shown and saved to a file. | shown on screen and saved to a
file.

2.6.63 --VER: Display The Compiler’s Version Information

The --VER option will display what version of the compiler is running.

2.6.64 —-WARN=level: Set Warning Level

The --WARN option is used to set the compiler warning level. Allowable warning levels range from
-9 t0 9. The warning level determines how pedantic the compiler is about dubious type conversions
and constructs. The higher the warning level, the more important the warning message. The default
warning level is 0 and will allow all normal warning messages.

Use this option with care as some warning messages indicate code that is likely to fail during
execution, or compromise portability.

Warning message can be individually disabled with the ~——-MSGDISABLE option, see 2.6.42. See
also Section 2.5 for full information on the compiler’s messaging system.

See Section 2.7 for use of this option in MPLAB IDE.

2.6.65 —--WARNFORMAT=format: Set Warning Message Format

This option sets the format of warning messages produced by the compiler. See Section 2.5.4 for
more information on this option. For full information on the compiler’s messaging system, see
Section 2.5.

65

MPLAB IDE v8 Universal Toolsuite Equivalents PICC18 Command-line Driver

2.7 MPLAB IDE v8 Universal Toolsuite Equivalents

When compiling under the MPLAB IDE, it is still the compiler’s command-line driver that is being
executed and compiling the program. The HI-TECH Universal Toolsuite plugin controls the MPLAB
IDE build options dialog that is used to access the compiler options, however these graphical controls
ultimately adjust the command-line options passed to the command-line driver when compiling. You
can see the command-line options being used when building in MPLAB IDE in the Output window.

The following dialogs and descriptions identify the mapping between the MPLAB IDE v8 dialog
controls and command-line options. As the toolsuite is universal across all HI-TECH compilers, not
all options are applicable for HI-TECH C Compiler for PIC18 MCUs.

If you are using MPLAB IDE X, see Section 2.8.

2.7.1 Directories Tab

The options in this dialog control the output and search directories for some files. See Figure 2.3 in
conjunction with the following command line option equivalents.

1. Output directory
This selection uses the buttons and fields grouped in the bracket to specify an output directory
for files output by the compiler.

2. Include Search path
This selection uses the buttons and fields grouped in the bracket to specify include (header)
file search directories. See 2.6.6.

2.7.2 Compiler Tab

The options in this dialog control the aspects of compilation up to code generation. See Figure 2.4
in conjunction with the following command line option equivalents.

1. Define macros
The buttons and fields grouped in the bracket can be used to define preprocessor macros. See
Section 2.6.3.

2. Undefine macros
The buttons and fields grouped in the bracket can be used to undefine preprocessor macros.
See Section 2.6.15.

66

PICC18 Command-line Driver MPLAB IDE v8 Universal Toolsuite Equivalents

Build Options For Project “astest.mcp" 21 x|

Directories ICustom Buildl Trace | Driver | l:ompilell Linkell Globall

[Directories and Search Paths

Show directories for: IUulput Directory LI A/_
Qutput Directory o
New | Include Search Pal «l |

Suite Defaults I)

[~ Build Directory Policy
& Assemble/Compile in source-file directory, link in output directory
" Assemble/Compile/Link in the project directory

0K | Cancel | Apply | Help

Figure 2.3: The Directories dialog

67

MPLAB IDE v8 Universal Toolsuite Equivalents PICC18 Command-line Driver

Build Options For Project “demo.mcp™ 21x]

Diveotoviesl Custom Buildl Trace | Driver Compiler |Linkev| Glohall

- Define macro:

Remove

T

- Undefine macros

Remove

A

| fdd,

IR IR R

Uperalion mode IPRU vl i~ Address qualifiers

I\gnnre ¥

A

V¥ Preprocess assembler Identifier length Iﬁ — e
7 Optimization settings M
[V Global l@ ™ Verbose < e
[V &ssembler
I Speed Warning level IG < °
[~ Debug
o

[~ Bank0 |~ Bankl
[~ Bank2 [Bank3
IV Eeprom

0K | Comcel | Apb | Hep

Figure 2.4: The Compiler dialog

68

PICC18 Command-line Driver MPLAB IDE v8 Universal Toolsuite Equivalents

3. Preprocess assembly
This checkbox controls whether assembly source files are scanned by the preprocessor. See
Section 2.6.12.

4. Optimization settings
These controls are used to adjust the different optimizations the compiler employs. See Sec-
tion 2.6.47.

5. Identifier length
This selector is currently not implemented. See Section 2.6.10.

6. Verbose
This checkbox controls whether the full command-lines for the compiler applications are dis-
played when building. See Section 2.6.16.

7. Warning level
This selector allows the warning level print threshold to be set. See Section 2.6.64.

8. Operation Mode
This selector allows the user to force another available operating mode (e.g. Lite, Standard or
PRO) other than the default. See Section 2.6.41.

9. Address Qualifier
This selector allows the user to select the behavior of the address qualifier. See Section 2.6.18.

2.7.3 Linker Tab

The options in this dialog control the link step of compilation. See Figure 2.5 in conjunction with
the following command line option equivalents.

1. Runtime options
These checkboxes control the many runtime features the compiler can employ. See Section
2.6.55.

2. Fill
This field allows a fill value to be specified for unused memory locations. See Section 2.6.33.

3. Codeoffset
This field allows an offset for the program to be specified. See Section 2.6.24.

69

MPLAB IDE v8 Universal Toolsuite Equivalents

PICC18

Command-line Driver

70

Build Options For Project “astest.mcp™ 21|

Directories | Custom Build | Trace | Driver | Compiler Linker |Global|

< IV Wam on stack overflow
™ Initialize CPO

I™ | Iritialize GPRs

I= KT handler

™| Soft reset handler

= | Unused intermupt vect
I™ Unused interrup
™| Program the de:
IV Link in C Library

= Link in Peripheral Library
I Optimal performance

rs will RESET]
|ntesmupt

ult config words

[~ Runtime options Linkeroptions ||
|V Clear bss Fill ol
I~ Initialize stack
I™ | Initialize heap Codeoffset ol
IV Initialize data
I~ Keep generated startup.as Checksum ol
I~ Use OSCEAL ﬁ -
= | Backup reset condition flags D
I™ Format he file for download Vectors Im -
I™ Tiest B&H onstartup
I™ | Managed stack Callgraph |Short form 'l P

Debugger |None v I

Trace type I

Stack size [Specific size L]

Heap size I‘Specﬂiw: size v
l— -«
Frequency

A
i

[~ Interrupt options

I~ Nore
Number of vectors I %
Vector table location I i
Type of vector I—LI

~ Summary options
I Display psect usage
™ Display class usage

[~ Extend address 0in HEX file g—L_|

66 6 00000000

I~ Display HEX usage map

[V Display overall memory usage J

Lo]

Cancel | Apply | Help |

Figure 2.5: The Linker dialog

PICC18 Command-line Driver MPLAB IDE v8 Universal Toolsuite Equivalents

10.

12.

13.

14.

15.

16.

Checksum
This field allows the checksum specification to be specified. See Section 2.6.20.

. Errata

This field allows the errata workarounds employed by the compiler to be controlled. See
Section 2.6.30.

Vectors
Not applicable.

Callgraph
Not applicable.

. Debugger

This selector allows the type of hardware debugger to be chosen. See Section 2.6.26.

. Trace type

Not yet implemented.

Stack size
Not applicable.

. Heap size

Not applicable.

Frequency
Not applicable.

Extend address 0 in HEX file
This option specifies that the intel HEX file should have initialization to zero of the upper
address. See Section 2.6.49.

Interrupt options
Not applicable.

Report Options
These checkboxes control which summaries are printed after compilation. See Section 2.6.61.

Create HTML Files

This checkbox enables the produced of a web page page that has information relating to the
compilation process. It is accessible from html/index.html in the output directory. See
Section 2.6.37.

71

MPLAB IDE v8 Universal Toolsuite Equivalents PICC18 Command-line Driver

Build Options For Project "5-10602_0100.mcp™ 21x|

Directories | Custom Build | Trace | Driver | Compiler | Linker ~Global I

[Code and data mode!

% hMemory model |5 mal vl Code pointer size |1 6 bit v <

> Size of Double |24 External memory |'/ordwrite v | <€——onu ||
|9 Size of Float | 24 bit 'I Instruction set I I

| p I Usesticteals Printf [Intsenly 7| @ |
|y RAM ranges ROM ranges e

[~ Additional command-line options (link-time only)

1hANe

D dddds

0K I Cancel I Apply | Help

Figure 2.6: The Global dialog

2.7.4 Global Tab

The options in this dialog control aspects of compilation that are applicable throughout code gener-
ation and link steps. See Figure 2.6 in conjunction with the following command line option equiva-
lents.

1. Memory model
Not applicable.

2. Size of Double
This selector allows the size of double types to be selected. See Section 2.6.27.

72

PICC18 Command-line Driver MPLAB X Universal Toolsuite Equivalents

3. Size of Float
This selector allows the size of float types to be selected. See Section 2.6.34.

4. Use strict calls
Not applicable.

5. RAM ranges
This field allows the default RAM (data space) memory used to be adjusted. See Section
2.6.53.

6. Code pointer size
Not applicable.

7. External memory
This selector allows the type of external memory access to be specified. See Section 2.6.29.

8. Instruction set
Not applicable.

9. Printf
Not applicable.

10. ROM ranges
This field allows the default ROM (program space) memory used to be adjusted. See Section
2.6.54.

11. Additional Command-line options
These widgets allow options which have no direct widget in the Build Options dialog to be
specified. The options entered here are only used during the second phase of compilation—the
code generation and link steps—and will not affect the preprocessing or parsing compilation
steps. These options must be compiler driver options, as described by Section 2.6.

2.8 MPLAB X Universal Toolsuite Equivalents

When compiling under the MPLAB X IDE, it is still the compiler’s command-line driver that is
being executed and compiling the program. The HI-TECH compiler plugins controls the MPLAB X
IDE Properties dialog that is used to access the compiler options, however these graphical controls
ultimately adjust the command-line options passed to the command-line driver when compiling.
You can see the command-line options being used when building in MPLAB X IDE in the Output
window.

73

MPLAB X Universal Toolsuite Equivalents PICC18 Command-line Driver

Categories:

> General picc (v9.82)
v © Conf: [default] Option categories: | Messages v
@ Simulator
v © HI-TECH PICC Verbose O
> Compiler —
> Linker Warning level 9 714_9

Additional options:

Figure 2.7: The Messages category

The following dialogs and descriptions identify the mapping between the MPLAB X IDE dialog
controls and command-line options. As the plugin is universal across all HI-TECH compilers, not
all options are applicable for HI-TECH C Compiler for PIC18 MCUs.

If you are using MPLAB IDE v8, see Section 2.7.

2.8.1 Compiler Category

The panels in this category control aspects of compilation of C source.

2.8.1.1 Messages

These options relate to messages produced by the compiler (see Section 2.5 for more information).
See Figure 2.7 in conjunction with the following command line option equivalents.

1. Verbose:
This checkbox controls whether the full command-lines for the compiler applications are dis-
played when building. See Section 2.6.16.

2. Warning level:
This selector allows the warning level print threshold to be set. See Section 2.6.64.

2.8.1.2 Address Qualifiers

This option illustrated in Figure 2.8 relates to how the compiler responds to some qualifiers.

74

PICC18 Command-line Driver MPLAB X Universal Toolsuite Equivalents

Categories: icc (v9.82)
@ General G i
v © Conf: [default] Option categories: | Address Qualifiers =)
@ Simulator
v © HI-TECH PICC [action (" ignore)
> Compiler
> Linker
Additional options:
Figure 2.8: The Address Qualifiers category
Categories: icc (v9.82)
© General L :
v © Conf: [default] Option categories: | Operation +
@ Simulator
v @ HI-TECH PICC i [;
Operation mode PRO !
© Compiler °_> P ﬂ
@ Linker

Additional options:

Figure 2.9: The Operation Category

1. Address Qualifier:
This selector allows the user to select the behavior of the address qualifiers. See Section 2.6.18.

2.8.1.3 Operation

This option illustrated in Figure 2.9 relates to the operating mode of the compiler.

1. Operation Mode:
This selector allows the user to force another available operating mode (e.g. Lite or PRO)
other than the default. See Section 2.6.41.

2.8.1.4 Preprocessor

These options, shown in Figure 2.10, relate to preprocessor operation.

75

MPLAB X Universal Toolsuite Equivalents PICC18 Command-line Driver

Project Properties - options

Categories:
i .82
> General picc (v9.82)
v © Conf: [default] Option categories: | Preprocessor 3
@ Simulator

Ve HI'TECH PICC Define macros

(Compiler

@ Linker

A

Identifier length 31

A

Include directories

Undefine macros — e
e_> Preprocess assembler g

Additional options:

Figure 2.10: The Preprocessor Category

1. Define macros:
The buttons and fields grouped in the bracket can be used to define preprocessor macros. See
Section 2.6.3.

2. Undefine macros:
The buttons and fields grouped in the bracket can be used to undefine preprocessor macros.
See Section 2.6.15.

3. Preprocess assembly:
This checkbox controls whether assembly source files are scanned by the preprocessor. See
Section 2.6.12.

4. Identifier length:
This selector is currently not implemented. See Section 2.6.10.

5. Include Directories:
This selection uses the buttons and fields grouped in the bracket to specify include (header)
file search directories. See Section 2.6.6.

2.8.1.5 Optimization

These options, shown in Figure 2.11, relate to optimizations performed by the compiler.

1. Optimization set:
This controls enables different optimizations the compiler employs. See Section 2.6.47.

76

PICC18 Command-line Driver MPLAB X Universal Toolsuite Equivalents

Categories:

& (

Use global level

T

Global level (-9 44

A

> General picc (v9.82)
v @ Conf: [default] Option categories: | Optimization =
@ Simulator
v oe H"TECH PICC Optimization Set | default ':]
© Compiler
o Linker Generated Assembler Code @ <}
Assembler Files (=)
Speed ¥ O
Debug

Additional options:

Figure 2.11: The Optimization Category

2. Generated Assembly Code:
The control enables optimization of assembly code generated from C code. See Section 2.6.47.

3. Assembly Files:
This control enables optimization of assembly source files. See Section 2.6.47.

4. Speed:
This control allows you to toggle between speed- or space-biased optimizations. See Sec-
tion 2.6.47.

5. Debug:
This control allows you to disable some optimizations so that generated code is better behaved
in debuggers. See Section 2.6.47.

6. Global Level:
This control allows you to enable the global C optimizer and adjust the optimization level. See
Section 2.6.47.

2.8.2 Linker Category

The options in this dialog control the aspects of the second stage of compilation including code
generation and linking.

2.8.2.1 Data

These options, shown in Figure 2.12 relate to C data types and data memory.

77

MPLAB X Universal Toolsuite Equivalents PICC18 Command-line Driver

Categories:

2 General picc (v9.82)
v @ Conf: [defauld Option categories: | Data model >
© Simulator
v © HI-TECH PICC Memory model T
@ Compiler b
o Linker °—> Size of Double 24 bit ﬂ
Size of Float (24 bit B <_Q
Use strict calls N/A
e-» RAM ranges
Additional options:
Figure 2.12: The Data Category
Categories: .
o General picc (v9.82)
v © Conf: [default) Option categories: | Report options >
@ Simulator
v ¢ HI-TECH FICC °_> Display psect usage
@ Compiler P
o Linker Display class usage <

Display overall memory usage

Display HEX usage map

O0&00O

A

Additional options:

Figure 2.13: The Report Category

1. Size of Double:
This selector allows the size of the double type to be selected. See Section 2.6.27.

2. Size of Float:
This selector allows the size of the f1oat type to be selected. See Section 2.6.34.

3. RAM ranges:
This field allows the default RAM (data space) memory used to be adjusted. See Section 2.6.53.

2.8.2.2 Report

These options, shown in Figure 2.13 relate to information printed after compilation.

78

PICC18 Command-line Driver MPLAB X Universal Toolsuite Equivalents

1. Display Psect Usage:
This checkbox enables printing of psect locations after compilation. See Section 2.6.61.

2. Display Class Usage:
This checkbox enables printing of psect ranges sorted by class after compilation. See Sec-
tion 2.6.61.

3. Display overall memory usage:
This checkbox enables printing of a memory summary after compilation. See Section 2.6.61.

4. Display HEX Usage:
This checkbox enables printing of a graphical representation of HEX file contents after com-
pilation. See Section 2.6.61.

2.8.2.3 Runtime

All the widgets in Figure 2.14 correspond to suboptions of the —-RUNTIME option, see Sec-
tion 2.6.55.

2.8.24 Code

These options, shown in Figure 2.15 relate to program memory.

1. External memory:
The control allows configuration of the external memory interface. See Section 2.6.29.

2. ROM ranges:
This field allows the default ROM (program space) memory used to be adjusted. See Sec-
tion 2.6.54.

2.8.2.5 Additional

These options, shown in Figure 2.16 relate to miscellaneous options.

1. Extra linker Options:
This field allows specification of additional user-defined linker options, see Section 2.6.8.

79

MPLAB X Universal Toolsuite Equivalents PICC18 Command-line Driver

Project Properties - options

Categories:

o General picc (v9.82)

v 9 Conf: [default] Option categories: [Runtime options 3
@ Simulator

¥ 9 HI-TECH PICC
@ Compiler
° Initialize stack
Initialize heap

Clear bss

> >

Initialize data

Keep generated startup.as

RORzzR

Calibrate oscillator

Alternate oscillator value
Backup reset condition flags
Format hex file for download
Managed stack

Warn on stack overflow
Q_>' Initialize CPO
Initialize GPRs

NMI handler
Soft reset handler

zzzlzlzz@00

> > > > > >

Test RAM on startup

N;

o

Unused interrupt vectors Mapping *%'i

>

Program the device with default co...
Link in C library
Link in Peripheral Library

Optimal performance

Z|Z(Z|M =

\Checksum verification

> > >

Figure 2.14: The Runtime Category

Categories:
© General
v © Conf: [default] Option categories: | Code model B
© Simulator

v @ HI-TECH PICC Code pointer size N/A

@ Compiler
o Linker °_> External memory

Instruction set

picc (v9.82)

ROM ranges

Additional options:

Figure 2.15: The Code Category

80

PICC18 Command-line Driver MPLAB X Universal Toolsuite Equivalents

Categories:

© General picc (v9.82)
v @ Conf: [default Option categories: | Additional options >
@ Simulator
e HI_TECH picC Extra Linker Options
© Compiler ’
© Linker Fill -

Codeoffset

Checksum

A

Errata N/A

Callgraph

Trace type N/A

A

Extend address 0 in HEX file

? 293

Additional options:

Figure 2.16: The Additional Category

2. Fill:
This field allows a fill value to be specified for unused memory locations. See Section 2.6.33.

3. Codeoffset:
This field allows an offset for the program to be specified. See Section 2.6.24.

4. Checksum:
This field allows the checksum specification to be specified. See Section 2.6.20.

5. Errata:

This allows customization of the errata workarounds applied by the compiler. See Sec-
tion 2.6.30.

6. Trace type:
Not yet implemented.

7. Extend address 0 in HEX file:
This option specifies that the intel HEX file should have initialization to zero of the upper
address. See Section 2.6.49.

81

MPLAB X Universal Toolsuite Equivalents PICC18 Command-line Driver

82

Chapter 3

C Language Features

HI-TECH C Compiler for PIC18 MCUs supports a number of special features and extensions to the
C language which are designed to ease the task of producing ROM-based applications. This chapter
documents the compiler options and special language features which are specific to the Microchip
PIC 18 family of processors.

3.1 ANSI Standard Issues

3.1.1 Divergence from the ANSI C Standard

HI-TECH C Compiler for PIC18 MCUs diverges from the ANSI C standard in one area: function
recursion.

Due to the PIC18’s hardware limitations of no easily-usable stack and limited memory, function
recursion is unsupported.

3.1.2 Implementation-defined behaviour

Certain sections of the ANSI standard have implementation-defined behaviour. This means that
the exact behaviour of some C code can vary from compiler to compiler. Throughout this manual
are sections describing how the HI-TECH C Compiler for PIC18 MCUs compiler behaves in such
situations.

83

ANSI Standard Issues C Language Features

3.1.3 Non-ANSI Operations

HI-TECH C Compiler for PIC18 MCUscan detect specific sequences of portable ANSI C code
that implicitly implements a rotate operation. The C language only specifies a left and right shift
operator, but no rotate operator. The code generator encodes matching sequences using assembly
rotate instructions where possible.

The code sequence to implement a rotate right by 1 bit looks like:

var = (var >> 1) | (var << 7);
where var must be an unsigned char or:
var = (var >> 1) | (var << 15);

where var must be an unsigned int. Rotates can be either left or right and of any number of bits.
Note that a rotate left of 1 bit is equivalent to a rotate right of 7 bits when dealing with byte-wide
variables, or a rotate right of 15 bits when dealing with 2-byte quantities.

3.1.4 C18 Compatibility

HI-TECH C Compiler for PIC18 MCUs provides ANSI C compliance, as well as HI-TECH C spe-
cific extensions to the C language. In addition, the compiler can be placed into a special mode that
will allow it to accept language extensions used in the MPLAB C Compiler for PIC18 MCUs (former
called, and referenced here as, “MPLAB C18” or just “C18”) and so can be used as a replacement
for this compiler. This mode, which is called C18 compatibility mode, allows HI-TECH C Compiler
for PIC18 MCUs to compile legacy projects that were designed for the MPLAB compiler. When not
in this mode, the compiler will only accept ANSI C or the HI-TECH C language extensions.

Support for compatibility in version 9.80 of HI-TECH C Compiler for PIC18 MCUs is
beta only. Not all syntax may be supported and compliance with the C18 operation is
not guaranteed.

In C18 compatibility mode, the compiler will accept most C language extensions offered by MPLAB
C18 and many of the directives and instruction formats accepts by the internal C18 assembler. Sep-
arate assembly modules, that would normally be passed to MPASM, and the directives and syntax
that these files can contain, are not supported.

To provide further compatibility of legacy projects, a replacement MPLAB C18 driver (mcc18)
is provided HI-TECH C Compiler for PIC18 MCUs that mimics the operation of the MPLAB C18

84

C Language Features Processor-related Features

compiler executable. When executed, this replacement driver will automatically invoke the HI-
TECH compiler in the compatibility mode and transcode options to the HI-TECH equivalent. This
allows command line options, batch files, linker scripts or MPLAB IDE projects setup for MPLAB
C18 to use the HI-TECH compiler with virtually no modification. Legacy projects need only be
associated with, and call, the replacement MPLAB C18 driver to build using the HI-TECH compiler
in compatibility mode.

This manual only describes the operation of the compiler in HI-TECH compatibility mode. For
the meaning of language extensions and compiler operation in C18 compatibility mode, refer to the
MPLAB C Compiler for PIC18 MCUs compiler manual.

When you run the installer for this compiler, you have the option of converting your
existing MPLAB IDE projects configured to use the MPLAB C Compiler for PIC18
MCUs to the HI-TECH compiler. Once converted, these projects will use the HI-TECH
compiler in compatibility mode and the HI-TECH replacement compiler driver (mcc18)
will be called. At any time, you may re-run the compiler’s activation program from
the Windows Start menu to convert projects if you did not perform this action when
installing.

If you convert your C18 projects, this will mean that they will not use the installed
MPLAB C Compiler for PIC18 MCUs unless you revert the Location paths of the exe-
cutables in the Select Language Toolsuite dialog in the MPLAB IDE (v8), or the Built
Tool settings in the Embedded tab of the MPLAB X IDE Preferences dialog.

It is recommended that for new projects, the HI-TECH syntax is followed.

3.2 Processor-related Features

HI-TECH C Compiler for PIC18 MCUs has many features which relate directly to the PIC18 family
of processors. These are detailed in the following sections.

3.2.1 Processor Support

HI-TECH C Compiler for PIC18 MCUs supports the full range of Microchip PIC 18 processors.
However, new devices in this family are frequently released. There are several ways you can check
if the compiler you are using supports a particular device. From MPLAB IDE, open the Build
Options dialog. Select the Driver tab. In the Available Drivers field, select the compiler you wish to
use. A list of all devices supported by that compiler will be shown in the Selected Driver Information
and Supported Device area, towards the center of the dialog.

85

Processor-related Features C Language Features

From the command line, the same information can be obtained. Run the compiler you wish to
use and pass it the option ——CHIPINFO (See Section 2.6.22). A list of all devices will be printed.

Additional code-compatible processors may be added by editing the picc-18.1ini file in the
DAT directory. User-defined processors should be placed at the end of the file. The header of the
file explains how to specify a processor. Newly added processors will be available the next time you
compile by selecting the name of the new processor on the command line in the usual way.

3.2.2 Device Header Files

There is one header file that is recommended be included into each source file you write. The file is
<htc.h> and is a generic file that will include other device and chip-specific header files when you
build your project.

Inclusion of this file will allow access to SFRs via special variables, as well as macros which
allow special memory access or inclusion of special instructions, like CLRWDT () .

If you are writing assembly code, there are different header files that define assembly symbols
that represent the SFRs. See 3.10.3.1 for more information on these files.

3.2.3 Stack

The hardware stack on PIC18 devices is limited in depth and cannot be manipulated directly. It is
only used for function return address and cannot be used for program data. The compiler implements
a compiled stack for local data objects, see Section 3.4.1.1 for information on how this is achieved.

You must ensure that the maximum stack depth is not exceeded; otherwise, code may fail. Call-
ing too many nested functions may overflow the stack, and it is important to take into account
interrupts, which also use levels of the stack.

A call graph is provided by the code generator in the assembler list file. This will indicate the
stack levels at each function call and can be used as a guide to stack depth. The code generator may
also produce warnings if the maximum stack depth is exceeded, see Section 2.6.55.

Both of these are guides to stack usage. Optimizations and the use of interrupts can change the
stack depth used by a program over that determined by the compiler.

3.2.4 Configuration Fuses

The PIC18 processor’s have several locations which contain the configuration bits or fuses. These
bits may be set using the configuration pragma. The pragma has the forms:

#pragma config setting = state or value
#pragma config register = value

86

C Language Features Processor-related Features

where setting is a configuration setting descriptor, e.g. WDT, and state is a textual description
of the desired state, e.g. OFF. The value field is a numerical value that can be used in preference to
a descriptor. The value is assigned to the setting. For example,

#pragma config WDT = ON // turn on watchdog timer
#pragma config WDT = 1 // an alternate form of the above
#pragma config WDTPS = 0x1A // specify the watchdog timer postscale value

One pragma can be used to program several settings by separating each setting-value pair with a
comma. For example, the above could be specified with one pragma, as in the following.

#pragma config WDT=ON, WDTPS = OxI1A

Rather than specify individual settings, the entire register may be programmed with one numer-
ical value, if you prefer, e.g.

#pragma config CONFIGIL = 0x8F

The settings and values associated with each device can be determined from an HTML guide. Open
the file chipinfo.html, which is located in the DOCS directory of your compiler installation. Click
on your target device and it will show you the settings and values that are appropriate with this
pragma. Check your device datasheet for more information.

The compiler also has legacy support for the __CONFIGand ___PROG_CONFIG macros which allow
configuration bit symbols or a configuration word value, respectively, to be specified. For example:

__CONFIG(2, BW8 & PWRTDIS & WDTPS1 & WDTEN); // specify symbols
or
_ _PROG_CONFIG(1, OxFE57); // specify a literal constant value

You cannot use the symbols in the ___PROG_CONFIG macro, nor can you use a literal value in the
__CONF'IG macro.

Use the pragma in preference to the macros for new projects. To use these macros, ensure you
include <htc.h> in your source file. Symbols for the macros can be found in the .cfgdata fies
contained in the dat/cfgdata directory of your compiler installation directory.

Neither the config pragma, nor the macros, produce executable code and so should ideally be
placed outside function definitions.

87

Processor-related Features C Language Features

3.2.5 ID Locations

Some PIC18 devices have locations outside the addressable memory area that can be used for storing
program information, such as an ID number. The config pragma may also be used to place data
into these locations by using a special register name. The pragma is used in a manner similar to:

#pragma config IDLOCX = value

where X is the number (position) of the ID location, and value is the nibble or byte which is to be
positioned into that ID location. If the value is larger than the maximum value allowable for each
location on the target device, the value will be truncated and a warning message issued. The size of
each ID location value varies from device to device. See your device datasheet for more information.
For example:

#pragma config IDLOCO = 1
#pragma config IDLOCL = 4

will attempt fill the first two ID locations with 1 and 4. One pragma can be used to program several
locations by separating each register-value pair with a comma. For example, the above could also be
specified as:

#pragma config IDLOCO = 1, IDLOCl = 4
The compiler also has legacy support for the __IDLOC macro, for example:
__IDLOC(15F01);

To use this macro, ensure you include <htc.h> in your source file.
Neither the config pragma, nor the __IDLOC macro, produce executable code and so should
ideally be placed outside function definitions.

3.2.6 Bit Instructions

Wherever possible, HI-TECH C Compiler for PIC18 MCUs will attempt to use the PIC18 bit in-
structions. For example, when using a bitwise operator and a mask to alter a bit within an integral
type, the compiler will check the mask value to determine if a bit instruction can achieve the same
functionality.

unsigned int foo;
foo |= 0x40;

will produce the instruction:

88

C Language Features Processor-related Features

bsf _foo,6
To set or clear individual bits within integral type, the following macros could be used:

#define bitset (var,bitno) ((var) |= 1UL << (bitno))
#define bitclr(var,bitno) ((var) &= ~(1UL << (bitno)))

To perform the same operation as above, the bitset macro could be employed as follows:

bitset (foo, 6);

3.2.7 EEPROM and Flash Runtime Access

The compiler offers several methods of accessing EEPROM and Flash memory. These are described
in the following sections.

3.2.7.1 EEPROM Access

For those PIC devices that support external programming of their EEPROM data area, the __ EEPROM_DATA ()
macro can be used to place the initial EEPROM data values into the HEX file ready for programming.
The macro is used as follows.

#include <htc.h>
_ EEPROM_DATA(O, 1, 2, 3, 4, 5, 6, 7);

The macro accepts eight parameters, being eight data values. Each value should be a byte in size.
Unused values should be specified as a parameter of zero. The macro may be called multiple times
to define the required amount of EEPROM data. It is recommended that the macro be placed outside
any function definitions.

The macro defines, and places the data within, a psect called eeprom_data. This psect is posi-
tioned by a linker option in the usual way. This macro is not used to write to EEPROM locations
during run-time.

There are functions to access the EEPROM at runtime. These are provided by the peripheral
library.

The function forms of these routines use the prototypes:

unsigned char eeprom_read(unsigned int addr);
Read and return the byte location at addr in the EEPROM memory.

void eeprom_write (unsigned int addr, unsigned char value);

89

Processor-related Features C Language Features

Write value to the EEPROM memory at the address addr.
The macros EEPROM_READ () and EEPROM_WRITE () are for legacy support, but actually call the
function versions of these routines. So to write a value, the following will call eeprom_write.

EEPROM_WRITE (address, value);
To read a byte of data from an address in EEPROM memory, and store it in a variable:
variable=EEPROM_READ (address) ;

For convenience, _ EEPROMSIZE predefines the number of bytes of EEPROM available on chip.

3.2.7.2 Flash Access

Routines to access the flash memory are provided in the peripheral libraries. See 2.6.55 for informa-
tion on how these can be specified when building.
The prototypes for the available functions are:

void EraseFlash(unsigned long startaddr, unsigned long endaddr);
Erase flash memory from startadd to endaddr.

void ReadFlash(unsigned long startaddr, unsigned int num_bytes,
unsigned char *flash_array);

Read num_bytes bytes of flash memory starting from startaddr, storing them in the array specified
by flash_array.
void WriteBytesFlash (unsigned long startaddr, unsigned int num_bytes,
unsigned char *flash_array);
Write num_bytes bytes of data from flash_array into flash memory starting at address start_addr.
void WriteWordFlash (unsigned long startaddr, unsigned int data);
Write data into flash at address start_addr.

void WriteBlockFlash (unsigned long startaddr, unsigned char num_blocks,
unsigned char *flash_array);

90

C Language Features Processor-related Features

Write num_blocks blocks of data from f1ash_array into flash memory starting at address start_addr.
The block size is device dependent and is indicated in the device datasheet.

Note that when flash memory is written, the entire block that contains the new values must be
erased and then written as a whole. You need to ensure that the start and end address you specify in
these routines take these boundaries into account. If you only wish to write some of the locations in
the block, then you must read in the block and store it in a RAM array, modify the copy to include
the changes required, then write then modifed array back to flash. Similarly, when erasing flash
memory, you should erase entire blocks. Check your device datasheet for flash block sizes and exact
operation.

3.2.8 Using SFRs From C Code

The Special Function Registers (SFRs) are registers which control aspects of the MCU operation or
that of peripheral modules on the device. Most of these registers are memory mapped, which means
that they appear at specific addresses in the data memory space of the device. With some registers,
the bits within the register control independent features. Some registers are read-only; some are
write-only.

Memory-mapped SFRs are accessed by special C variables that are placed at the addresses of
the registers. Variables that are placed at specific addresses are called absolute variables and are
described in Section 3.4.2. These variables can be accessed like any ordinary C variable so no
special syntax is required to access SFRs. Bit variables, as well as structures (with bit-fields), can
also be made absolute and so either can be used to represent bits within the register.

The SFR variables are predefined in header files and will be accessible once the <htc.h> header
file (see Section 3.2.2) has been included into your source code. Both bit variables and structures
with bit-fields are defined by the inclusion of this header file so you may use either in your source
code.

The names given to the C variables, which map over the registers and bit variables, or bit-fields,
within the registers are based on the names specified in the device data sheet. However, as there can
be duplication of some bit names within registers, there may be differences in the nomenclature. The
names of the structures that hold the bit-fields will typically be those of the corresponding register
followed by bits. For example, the following shows code that includes the generic header file,
clears PORTA as a whole, sets bit 0 of PORTA using a bit variable and sets bit 2 of PORTA using
the structure/bit-field definitions.

#include <htc.h>
void main(void)
{
PORTA = 0x00;
RAO = 1;

91

Processor-related Features C Language Features

PORTAbits.RA2 = 1;
}

To confirm the names that are relevant for the device you are using, check the device specific header
file that <htc.h> will include for the definitions of each variable. These files will be located in
the include directory of the compiler and will have a name that represents the device. There is a
one-to-one correlation between device and header file name that will be included by <htc.h>, e.g.
when compiling for a PIC18F452 device the <htc.h> header file will include (among other files)
<picl8£452.h>.

For compatibility, an additional header file using a C18-style name is also shipped with the
compiler. This will #include the “pic” version of the same file. So, for the PIC18F452 device, the
file <p18£452.h> can be used for legacy projects.

Care should be taken when accessing some SFRs from C code or from assembly in-line with
C code. Some registers are used by the compiler to hold intermediate values of calculations, and
writing to these registers directly can result in code failure. The compiler does not detect when SFRs
have changed as a result of C or assembly code that writes to them directly. The list of registers used
by the compiler and further information can be found in Section 3.7.

SFRs associated with peripherals are not used by the compiler to hold intermediate results and
can be changed as you require. Always ensure that you confirm the operation of peripheral modules
from the device data sheet.

3.2.8.1 Multi-byte SFRs

Some of the SFRs associated with the PIC18 can be grouped to form multi-byte values, e.g. in
the device datasheet the TMRxH and TMRxL register together form a 16-bit timer count value, TMRx.
Depending on the device and mode of operation, there may be hardware requirements to read these
registers correctly, e.g. the TMRxL register often must be read before trying to read the TMRxH register
to obtain a valid 16-bit result.

Although it is possible to define a word-sized C variable to map over such registers, the order in
which HI-TECH C Compiler for PIC18 MCUs the bytes would be read will vary from expression to
expression, i.e. it may read the most significant byte first, or the least.

Multi-byte timer registers are not supported by the compiler header files. It highly recommended
that the existing SFR definitions for each byte of the timer registers be used. Each SFR should be
accessed directly and in the required order by the programmer’s code. This will ensure a much
higher degree of portability.

The following code copies the two byte registers into C unsigned variable i for subsequent use.

i = TMROL;
i += TMROH << 8;

92

C Language Features Supported Data Types and Variables

Table 3.1: Basic data types

Type Size (bits) Arithmetic Type
bit 1 unsigned integer
char 8 signed or unsigned integer
unsigned char 8 unsigned integer
short 16 signed integer
unsigned short | 16 unsigned integer
int 16 signed integer
unsigned int 16 unsigned integer
long 32 signed integer
unsigned long | 32 unsigned integer
float 24 real
double 24 or 32! real

Macros are also provided to perform common operations, like reading and writing the timer registers,
and which read the registers in the correct order. See the macros READTIMERx and WRITETIMERx in
Chapter A.

3.3 Supported Data Types and Variables

The HI-TECH C Compiler for PIC18 MCUs compiler supports basic data types with 1, 2, 3 and
4 byte sizes. All multi-byte types follow least significant byte first format, also known as little-
endian. Word size values thus have the least significant byte at the lower address, and double word
size values have the least significant byte and least significant word at the lowest address. Table 3.1
shows the data types and their corresponding size and arithmetic type.

3.3.1 Radix Specifiers and Constants

The format of integral constants specifies their radix. HI-TECH C Compiler for PIC18 MCUs sup-
ports the ANSI standard radix specifiers as well as ones which enables binary constants to specified
in C code. The format used to specify the radices are given in Table 3.2. The letters used to specify
binary or hexadecimal radices are case insensitive, as are the letters used to specify the hexadecimal
digits.

Any integral constant will have a type which is the smallest type that can hold the value without
overflow. The suffix 1 or L may be used with the constant to indicate that it must be assigned either
a signed long or unsigned long type, and the suffix u or U may be used with the constant to

93

Supported Data Types and Variables C Language Features

Table 3.2: Radix formats

Radix Format Example
binary Obnumber or 0Bnumber | 0b10011010
octal Onumber 0763
decimal number 129
hexadecimal | Oxnumber or 0Xnumber | 0x2F

indicate that it must be assigned an unsigned type, and both 1 or L and u or U may be used to indicate
unsigned long int type.

Floating-point constants have double type unless suffixed by f or F, in which case itis a float
constant. The suffixes 1 or L specify a long double type which is considered an identical type to
double by HI-TECH C Compiler for PIC18 MCUs.

Character constants are enclosed by single quote characters ’, for example 'a’. A character
constant has char type. Multi-byte character constants are not supported.

String constants or string literals are enclosed by double quote characters ", for example "hello
world". The type of string constants is const char [] and the strings are stored in the program
memory. Assigning a string constant to a non-const char pointer will generate a warning from the
compiler. For example:

char * cp= "one"; // "one"™ in ROM, produces warning
const char * ccp= "two"; // "two" in ROM, correct

Defining and initializing a non-const array (i.e. not a pointer definition) with a string, for example:
char cal[]l= "two"; // "two" different to the above

produces an array in data space which is initialised at startup with the string "two" (copied from
program space), whereas a constant string used in other contexts represents an unnamed const-
qualified array, accessed directly in program space.

HI-TECH C will use the same storage location and label for strings that have identical character
sequences, except where the strings are used to initialise an array residing in the data space as shown
in the last statement in the previous example.

Two adjacent string constants (i.e. two strings separated only by white space) are concatenated
by the compiler. Thus:

const char * cp = "hello " "world";

assigned the pointer with the string "hello world".

94

C Language Features Supported Data Types and Variables

3.3.2 Bit Data Types and Variables

HI-TECH C Compiler for PIC18 MCUssupports bit integral types which can hold the values O or 1.
Single bit variables may be declared using the keyword bit. bit objects declared within a function,
for example:

static bit init_flag;

will be allocated in the bit-addressable psect rbit, and will be visible only in that function. When
the following declaration is used outside any function:

bit init_flag;

init_flag will be globally visible, but located within the same psect.

Bit variables cannot be auto or parameters to a function. A function may return a bit object
by using the bit keyword in the functions prototype in the usual way. The bit return value will be
returning in the carry flag in the status register.

Bit variables behave in most respects like normal unsigned char variables, but they may only
contain the values 0 and 1, and therefore provide a convenient and efficient method of storing boolean
flags without consuming large amounts of internal RAM. It is, however, not possible to declared
pointers to bit variables or statically initialise bit variables.

Operations on bit objects are performed using the single bit instructions (bsf and bcf) wherever
possible, thus the generated code to access bit objects is very efficient.

Note that when assigning a larger integral type to a bit variable, only the least-significant bit is
used. For example, if the bit variable bitvar was assigned as in the following:

int data = 0x54;
bit bitvar;
bitvar = data;

it will be cleared by the assignment since the least significant bit of data is zero. If you want to set
a bit variable to be 0 or 1 depending on whether the larger integral type is zero (false) or non-zero
(true), use the form:

bitvar = data != 0;

The psects in which bit objects are allocated storage are declared using the bit PSECT directive
flag. Eight bit objects will take up one byte of storage space which is indicated by the psect’s scale
value of 8 in the map file. The length given in the map file for bit psects is in units of bits, not bytes.
All addresses specified for bit objects are also bit addresses.

The bit psects are cleared on startup, but are not initialised. To create a bit object which has a
non-zero initial value, explicitly initialise it at the beginning of your code.

If the PICC18 flag -—-STRICT is used, the bit keyword becomes unavailable.

95

Supported Data Types and Variables C Language Features

3.3.3 Using Bit-Addressable Registers

The bit variable facility may be combined with absolute variable declarations (see Section 3.4.2) to
access bits at specific addresses. Absolute bit objects are numbered from O (the least significant bit
of the first byte) up. Therefore, bit number 3 (the fourth bit in the byte since numbering starts with
0) in byte number 5 is actually absolute bit number 43 (that is 8bits/byte * 5 bytes + 3 bits).

For example, to access the power down detection flag bit in the RCON register, declare RCON to
be a C object at absolute address 03h, then declare a bit variable at absolute bit address 27:

static unsigned char RCON @ OxFDO;
static near bit PD @ (unsigned)&RCON*8+2;

Note that all standard registers and bits within these registers are defined in the header files provided.
The only header file you need to include to have access to the PIC18 registers is <htc.h>. At compile
time, this will include the appropriate header for the selected chip.

3.3.4 8-Bit Integer Data Types and Variables

HI-TECH C Compiler for PIC18 MCUs supports both signed char and unsigned char 8-bit
integral types. If the signed or unsigned keyword is absent from the variable’s definition, the
default type is unsigned char unless the PICC18 --CHAR=signed option is used, in which case
the default type is signed char. The signed char type is an 8-bit two’s complement signed
integer type, representing integral values from -128 to +127 inclusive. The unsigned char is an
8-bit unsigned integer type, representing integral values from 0 to 255 inclusive. It is a common
misconception that the C char types are intended purely for ASCII character manipulation. This is
not true, indeed the C language makes no guarantee that the default character representation is even
ASCIL The char types are simply the smallest of up to four possible integer sizes, and behave in all
respects like integers.

The reason for the name “char” is historical and does not mean that char can only be used to
represent characters. It is possible to freely mix char values with short, int and long values in C
expressions. With HI-TECH C Compiler for PIC18 MCUs the char types will commonly be used
for a number of purposes, as 8-bit integers, as storage for ASCII characters, and for access to I/O
locations.

Variables may be declared using the signed char and unsigned char keywords, respectively,
to hold values of these types. Where only char is used in the declaration, the type will be signed
char unless the option, mentioned above, to specify unsigned char as default is used.

3.3.5 16-Bit Integer Data Types

HI-TECH C Compiler for PIC18 MCUs supports four 16-bit integer types. short and int are 16-bit
two’s complement signed integer types, representing integral values from -32,768 to +32,767 inclu-

96

C Language Features Supported Data Types and Variables

sive. Unsigned short and unsigned int are 16-bit unsigned integer types, representing integral
values from 0 to 65,535 inclusive. All 16-bit integer values are represented in little endian format
with the least significant byte at the lower address.

Variables may be declared using the signed short int and unsigned short int keyword
sequences, respectively, to hold values of these types. When specifying a short int type, the
keyword int may be omitted. Thus a variable declared as short will contain a signed short int
and a variable declared as unsigned short will contain an unsigned short int.

3.3.6 24-Bit Integer Data Types

HI-TECH C Compiler for PIC18 MCUs supports two 24-bit integer types. short long are 24-bit
two’s complement signed integer types, representing integral values from -8,388,608 to +8,388,607
inclusive. Unsigned short long are 24-bit unsigned integer types, representing integral values
from O to 16,777,215 inclusive. All 24-bit integer values are represented in little endian format with
the least significant byte at the lower address.

Variables may be declared using the signed short long int and unsigned short long
int keyword sequences, respectively, to hold values of these types. When specifying a short
long int type, the keyword int may be omitted. Thus a variable declared as short long will
contain a signed short long int and a variable declared as unsigned short long will contain
an unsigned short long int.

3.3.7 32-Bit Integer Data Types and Variables

HI-TECH C Compiler for PIC18 MCUssupports two 32-bit integer types. Long is a 32-bit two’s
complement signed integer type, representing integral values from -2,147,483,648 to +2,147,483,647
inclusive. The unsigned long type is a 32-bit unsigned integer type, representing the integral
values from 0 to 4,294,967,295 inclusive. All 32-bit integer values are represented in little endian
format with the least significant word and least significant byte at the lowest address. Long and
unsigned long occupy 32 bits as this is the smallest long integer size allowed by the ANSI standard
for C.

Variables may be declared using the signed long int and unsigned long int keyword se-
quences, respectively, to hold values of these types. Where only long int is used in the declaration,
the type will be signed long. When specifying this type, the keyword int may be omitted. Thus
a variable declared as 1ong will contain a signed long int and a variable declared as unsigned
long will contain an unsigned long int.

97

Supported Data Types and Variables C Language Features

Table 3.3: Floating-point formats

Format Sign | biased exponent mantissa
IEEE 754 32-bit X XXXX XXXX XXX XXXX XXXX XXXX XXXX XXXX
modified IEEE 754 24-bit | x XXXX XXXX XXX XXXX XXXX XXXX

Table 3.4: Floating-point format example IEEE 754

Format | Number biased expo- 1.mantissa decimal
nent
32-bit 7DA6B69Bh | 11111011b 1.01001101011011010011011b | 2.77000e+37
(251) (1.302447676659)
24-bit 42123Ah 10000100b 1.001001000111010b 36.557
(132) (1.142395019531)

3.3.8 Floating Point Types and Variables

Floating point is implemented using either a IEEE 754 32-bit format or a modified (truncated) 24-bit
form of this.

The 24-bit format is the default for all float and double values. This can be explicitly set
using the —-float=24 or --double=24 option. The 32-bit format is used for double values if the
--double=32 option is used. All float values can be set to 32 bits wide by using the --float=32
option or --float=double if the double type is also set to 32 bits wide.

This format is described in 3.3, where:

e sign is the sign bit
e The exponent is 8-bits which is stored as excess 127 (i.e. an exponent of 0 is stored as 127).

e mantissa is the mantissa, which is to the right of the radix point. There is an implied bit to the
left of the radix point which is always 1 except for a zero value, where the implied bit is zero.
A zero value is indicated by a zero exponent.

The value of this number is (-1)%8" x 2(exponent—127) x 1 mantissa.

Here are some examples of the IEEE 754 32-bit formats:

Note that the most significant bit of the mantissa column in 3.4 (that is the bit to the left of the
radix point) is the implied bit, which is assumed to be 1 unless the exponent is zero (in which case
the float is zero).

The 32-bit example in 3.4 can be calculated manually as follows.

The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take the binary
number to the right of the decimal point in the mantissa. Convert this to decimal and divide it by 223

98

C Language Features Supported Data Types and Variables

where 23 is the number of bits taken up by the mantissa, to give 0.302447676659. Add one to this
fraction. The floating-point number is then given by:
—19x 2124 X 1.302447676659 = 1x2.126764793256¢ + 37 x 1.302447676659~ 2.77000e + 37
Variables may be declared using the float and double keywords, respectively, to hold values
of these types. Floating point types are always signed and the unsigned keyword is illegal when
specifying a floating point type. Types declared as long double will use the same format as types
declared as double.

3.3.9 Structures and Unions

HI-TECH C Compiler for PIC18 MCUs supports struct and union types of any size from one
byte upwards. Structures and unions only differ in the memory offset applied for each member. The
members of structures and unions may not be objects of type bit, but bit-fields are fully supported.

Structures and unions may be passed freely as function arguments and return values. Pointers to
structures and unions are fully supported.

3.3.9.1 Bit-fields in Structures

HI-TECH C Compiler for PIC18 MCUs fully supports biz-fields in structures.

Bit-fields are allocated within 8- or 16-bit words. Although the ANSI standard only allows for
bit-fields of type int or unsigned int, this is not optimial on PICC18 devices. The allocation size
of the bit-field structure is based on the number of bits defined in the structure as a whole, thus the
following structure:

struct {
unsigned lo : 1;
unsigned dummy : 6;
unsigned hi : 1;

} foo;

will be allocated 1 byte of memory in total, but the following:

struct {
unsigned lo : 1;
unsigned dummy : 6;
unsigned hi : 1;
unsigned extra : 2;
} foo;

will be allocated 2 bytes of storage.

99

Supported Data Types and Variables C Language Features

Unnamed bit-fields may be declared to pad out unused space between active bits in control
registers. For example, if dummy is never used the structure above could have been declared as:

struct {
unsigned lo : 1;
unsigned O
unsigned hi : 1;
} foo;

A structure with bit-fields may be initialised by supplying a comma-separated list of initial values
for each field. For example:

struct {
unsigned lo : 1;
unsigned mid : 6;
unsigned hi : 1;

} foo = {1, 8, 0};

As PIC18 devices are little endian, the first bit defined will be the least significant bit of the word in
which it will be stored. When a bit-field is declared, it is allocated within the current word if it will
fit, otherwise a new word is allocated within the structure. Bit-fields can never cross the boundary
between word allocation units. For example, the declaration:

struct {
unsigned lo : 1;
unsigned dummy : 6;
unsigned hi : 1;

} foo;

will produce a structure occupying 1 byte. If foo was ultimately linked at address 10H, the field 1o
will be bit 0 of address 10H, hi will be at bit 7. The least significant bit of dummy will be bit 1 of
address 10H and the most significant bit of dummy will be at bit 6.

3.3.9.2 Structure and Union Qualifiers

HI-TECH C Compiler for PIC18 MCUs supports the use of type qualifiers on structures. When a
qualifier is applied to a structure, all of its members will inherit this qualification. In the following
example the structure is qualified const.

const struct {
int number;
int *ptr;
} record = { 0x55, &i};

100

C Language Features Supported Data Types and Variables

In this case, the structure will be placed into the program space and each member will, obviously, be
read-only. Remember that all members must be initialized if a structure is const as they cannot be
initialized at runtime.

If the members of the structure were individually qualified const but the structure was not, then
the structure would be positioned into RAM, but each member would be read-only. Compare the
following structure with the above.

struct {
const int number;
int * const ptr;
} record = { 0x55, &i};

3.3.10 Standard Type Qualifiers

Type qualifiers provide information regarding how an object may be used, in addition to its type
which defines it storage size and format. HI-TECH C Compiler for PIC18 MCUs supports both
ANSI qualifiers and additional special qualifiers which are useful for embedded applications and
which take advantage of the PIC18 architecture.

3.3.10.1 Const and Volatile Type Qualifiers

HI-TECH C Compiler for PIC18 MCUs supports the use of the ANSI type qualifiers const and
volatile.

The const type qualifier is used to tell the compiler that an object is read only and will not be
modified. If any attempt is made to modify an object declared const, the compiler will issue a
warning. User-defined objects declared const are placed in a special psects in the program space.
Obviously, a const object must be initialised when it is declared as it cannot be assigned a value at
any point at runtime. For example:

const int wversion = 3;
The volatile type qualifier is used to tell the compiler that an object cannot be guaranteed to retain
its value between successive accesses. This prevents the optimizer from eliminating apparently
redundant references to objects declared volatile because it may alter the behaviour of the program
to do so. All Input/Output ports and any variables which may be modified by interrupt routines

should be declared volatile, for example:

volatile static near unsigned char PORTA @ 0xF80;

101

Supported Data Types and Variables C Language Features

Volatile objects may be accessed using different generated code to non-volatile objects. For ex-
ample, when assigning a non-volatile object the value 1, the object may be cleared and then incre-
mented, but the same operation performed on a volatile object will load the W register with 1 and
then store this to the appropriate address.

3.3.11 Special Type Qualifiers

HI-TECH C Compiler for PIC18 MCUSs supports special type qualifiers, persistent, near and far
to allow the user to control placement of static and extern class variables into particular address
spaces. If the PICC18 option, -——STRICT is used, these type qualifiers are changed to __persistent,
__near and __far, respectively. These type qualifiers may also be applied to pointers. These type
qualifiers may not be used on variables of class auto; if used on variables local to a function they
must be combined with the static keyword. For example, you may not write:

void test (void) {
persistent int intvar; /* WRONG! */
. other code ...

}

because intvar is of class auto. To declare intvar as a persistent variable local to function
test (), write:

static persistent int intvar;

HI-TECH C Compiler for PIC18 MCUs also supports the keywords bank1, bank2 and bank3. These
keywords have been included to allow code to be easily ported from HI-TECH C Compiler for
PIC10/12/16 MCUs. These keywords are accepted by HI-TECH C Compiler for PIC18 MCUs, but
have no effect in terms of the object’s storage or how they are accessed. The -~—ADDRQUAL option has
no effect on these qualifiers in this version of the compiler.

3.3.11.1 Persistent Type Qualifier

By default, any C variables that are not explicitly initialised are cleared to zero on startup. This is
consistent with the definition of the C language. However, there are occasions where it is desired for
some data to be preserved across resets or even power cycles (on-off-on).

The persistent type qualifier is used to qualify variables that should not be cleared on startup.
In addition, any persistent variables will be stored in a different area of memory to other variables.
Persistent objects are placed within one of the non-volatile psects. If the persistent object is
also qualified near, it placed in the nvrram psect. Persistent bit objects are placed within the
nvbit psect. All other persistent objects are placed in the nvram psect.

102

C Language Features Supported Data Types and Variables

3.3.11.2 Near Type Qualifier

The near type qualifier can be used to place non-auto variables in the access bank of the PIC18.
The access bank is always accessible, regardless of the currently selected RAM bank, so accessing
near objects may be faster than accessing other objects and typically results in smaller code sizes.

The compiler automatically uses the access bank for frequently accessed user-defined variables
so this qualifier would only be needed for special memory placement of objects, for example if
C variables are accessed in hand-written assembly code that assumes that they are located in this
memory.

This qualifier is controlled by the compiler option -~ADDRQUAL, which determines its effect, see
Section 2.6.18. Based on this option’s settings, this qualifier may be binding or ignored (which is
the default operation). Qualifiers which are ignored will not produce an error or warning, but will
have no effect.

Here is an example of an unsigned char object placed within the access bank:

near unsigned char fred;

Objects qualified near cannot be auto or parameters to a function, but can be qualified static,
allowing them to be defined locally within a function, as in:

void myFunc(void) {
static near unsigned char local_near;

Note that the compiler may store some temporary objects in the common memory, so not all of this
space may be available for user-defined variables.

If the PICC18 option, -—STRICT is used, this type qualifier is changed to __near.

For the operation of this qualifier in C18 compatibility mode (see Section 3.1.4), refer to the
MPLAB C Compiler for PIC18 MCUs manual.

3.3.11.3 Far Type Qualifier

The far type qualifier is used to place non-auto variables into the program memory space for those
PIC18 devices which can support external memory. The compiler assumes that variables will be
located in RAM in this memory space.

Accesses to far variables are less efficient than that to internal variables and will result in larger,
slower code.

This qualifier is controlled by the compiler option ——~ADDRQUAL, which determines its effect, see
Section 2.6.18. Based on this option’s settings, this qualifier may be binding or ignored (which is
the default operation). Qualifiers which are ignored will not produce an error or warning, but will
have no effect.

Here is an example of an unsigned int object placed into the device’s external code space:

103

Supported Data Types and Variables C Language Features

far unsigned int farvar;

Objects qualified far cannot be auto or parameters to a function, but can be qualified static,
allowing them to be defined locally within a function, as in:

void myFunc(void) {
static far unsigned char local_far;

If the PICC18 option, -—STRICT is used, this type qualifier is changed to __ far.

Note that not all devices support extending their memory space in this way and the far qualifier
is not applicable to all PIC18 devices. For those devices that can extend their memory, the ad-
dress range where the additional memory will be mapped must first be specified with the ——RAM
option, see 2.6.53. For example, to map additional data memory from 20000h to 2FFFFh use
--RAM=default,+20000-2FFFF.

For the operation of this qualifier in C18 compatibility mode (see Section 3.1.4), refer to the
MPLAB C Compiler for PIC18 MCUs manual.

3.3.12 Pointer Types

There are two basic pointer types supported by HI-TECH C Compiler for PIC18 MCUs: data point-
ers and function pointers. Data pointers hold the address of variables which can be read, and possible
written, indirectly by the program. Function pointers hold the address of an executable routine which
can be called indirectly via the pointer.

Typically qualifiers are used with pointer definitions to customise the scope of the pointer, al-
lowing the code generator to set an appropriate size and format for the addresses the pointer will
hold. PRO version compilers use sophisticated algorithms to track the assignment of addresses to
data pointers, and, as a result, many of these qualifiers no longer need to be used, and the size of the
pointer is optimal for the its intended usage.

It is helpful to first review the ANSI standard conventions for definitions of pointer types.

3.3.12.1 Combining Type Qualifiers and Pointers

Pointers can be qualified like any other C object, but care must be taken when doing so as there are
two quantities associated with pointers. The first is the actual pointer itself, which is treated like
any ordinary C variable and has memory reserved for it. The second is the targer that the pointer
references, or to which the pointer points. The general form of a pointer definition looks like the
following.

target_type_&_qualifiers * pointer’s_qualifiers pointer’s_name;

104

C Language Features Supported Data Types and Variables

Any qualifiers to the right of the * (i.e. next to the pointer’s name) relate to the pointer variable itself.
The type and any qualifiers to the left of the * relate to the pointer’s targets.

TUTeRIAL

EXAMPLE OF POINTER QUALIFIERS Here are three examples of pointer definitions
using the volatile qualifier. The fields in the definitions have been highlighted with

spacing:
volatile int * vip ;
int * volatile ivp ;

volatile int * volatile vivp ;

The first example is a pointer called vip. It contains the address of int objects that
are qualified volatile. The pointer itself — the variable that holds the address — is
not volatile, however the objects that are accessed when the pointer is dereferenced
are volatile. That is, the target objects accessible via the pointer may be externally
modified.

The second example is a pointer called ivp which also contains the address of int
objects. In this example, the pointer itself is volatile, that is, the address the pointer
contains may be externally modified, however the objects that can be accessed when
dereferencing the pointer are not volatile.

The last example is of a pointer called vivp which is itself qualified volatile and
which also holds the address of a volatile object.

Bear in mind that one pointer can be assigned the address of many objects, for example a pointer
that is a parameter to a function is assigned a new object address every time the function is called.
The definition of the pointer must be valid for every target address assigned.

Care must be taken when describing pointers: Is a “const pointer” a pointer that points
to const objects, or a pointer that is const itself. You can talk about “pointers to const”
and “const pointers” to help clarify the definition, but such terms may not be universally
understood.

105

Supported Data Types and Variables C Language Features

3.3.12.2 Data Pointers

HI-TECH C Compiler for PIC18 MCUs monitors and records all assignments of addresses to each
data pointer the program defines. The size and format of the address held by each pointer is based
on this information. When more than one address is assigned to a pointer at different places in the
code, a set of all possible targets the pointer can address is maintained. This information is specific
to each pointer defined in the program, thus two pointers with the same type may hold addresses of
different sizes and formats due to the different nature of objects they address in the program.

The following pointer classifications are currently implemented:

e An 8-bit pointer capable of accessing the access bank;

— Address is an offset into the access bank

A 16-bit pointer capable of accessing the entire data memory space;

An 8-bit pointer capable of accessing up to 256 bytes of program space data;

— Address is an offset into psect smallconst;

A 16-bit pointer capable of accessing up to 64 kbytes of program space data;

— Address is an offset into psect mediumconst which is linked into any 64k block, but with
an offset into this block equal to the size of the data space memory;

A 24-bit pointer capable of accessing the entire program space;

A 16-bit pointer capable of accessing the entire data space memory and up to 64 kbytes of
program space data;

— Addresses above the top of the data space access program space; other addresses access
data space;

A 24-bit pointer capable of accessing the entire data space memory and the entire program
space;

— Bit #21 determines destination: this bit set indicates a data space address; clear indicates
a program space address

— This is the default pointer configuration as it can point to any object.

Each data pointer will be allocated one of the above classifications after preliminary scans of the
source code. There is no mechanism by which the programmer can specify the style of pointer
required (other than by the address assignments to the pointer).

106

C Language Features Supported Data Types and Variables

TUT®RIAL

DYNAMIC POINTER SIZES A program in the early stages of development contains the
following code;

void main(void) {

int i, *ip;

ip = &i;

}

The code generator is able to automatically allocate the variable i to the access bank,
which it does. The code generator notes that the pointer ip only points to the access
bank variable i, so this pointer is made an 8-bit wide access bank pointer.

As the program is developed, other near variables are defined and allocated space in the
access bank. A point is reach at which the variable 1 will no longer fit in the access bank
and it is automatically moved to banked RAM. When the program is next compiled, the
pointer ip will automatically become a 16-bit pointer to all of the data space, and the
code used to initialize and dereference the pointer will change accordingly.

One positive aspect of tracking pointer targets is less of a dependence on pointer qualifiers. The
standard qualifiers const and volatile must still be used in pointer definitions to indicate a read-
only or externally-modifiable target object, respectively. However this is in strict accordance with the
ANSI standard. HI-TECH specific qualifiers, like near and far, do not need to be used to indicate
pointer targets, and should be avoided. The non-use of these qualifiers will result in more portable
and readable code, and lessen the chance of extraneous warnings being issued by the compiler.

3.3.12.3 Pointers to Const

The const qualifier plays no direct part in specifying the pointer classification that the compiler will
allocate to a pointer. This qualifier should be used when the target, or targets, referenced by the
pointer should be read-only. The addresses of const objects assigned to a pointer will result in that
pointer having a classification capable of accessing the program space. The exact classification will
also depend on other factors.

The code generator tracks the total size of const qualified variables that are defined. It uses
this information to determine how large any pointers that can access const objects must be. Such
pointers may be either 1, 2 or 3 bytes wide.

TUTORIAL

POINTERS AND CONST DATA Assume a program contains of the following:

107

Supported Data Types and Variables C Language Features

void main(void) {

const char in_table[20] = { /* values */ };
char * cp;

cp = &in_table;

}

If the array above is the only const data in the program, then there are 20 bytes of const
data used in the program. In this instance, the code generator will make the pointer, cp,
a one byte wide pointer to objects in the program space.

Later, the program is changed and another const array is added to the code:
const char out_table[200] = { /* values */ };

As the total size of const data for this program now exceeds 255 bytes, the size of any
pointer that can access const objects will be made 2 bytes long. Even if the pointer, cp,
is not assigned the address of this new array, out_table, its size will increase.

For pointer that are accessing const objects, the address contained within the pointer is an offset into
the psect used to store the const data. For programs defining less than 256 bytes of const data, this
data is placed into a psect called smallconst; for larger const data amounts up to 64 kbytes, the
psect is called mediumconst.

The size of pointers that can access const data indicates the storage size of the address. However,
PIC18 devices use a 3-byte table pointer SFR to access data in the program space and all 3 bytes
of this register must be loaded and valid to access program space data. To avoid having to load all
3 bytes of this register with each program space access, the code generator also keeps track of the
number of table pointer registers that are modified during the program. These active table pointer
registers will be re-loaded with each program space access. The non-active registers are assumed to
retain the value assigned to them in the runtime startup code.

Any hand-written assembler code, or C code that writes to the table pointer SFRs di-
rectly, must ensure that the contents of any non-active table registers are preserved.
Saving both TBLPTRH and TBLPTRU will ensure that this requirement is met.

3.3.12.4 Pointers to Both Memory Spaces

When a pointer is assigned the address of one or more objects allocated memory in the data space,
and also assigned the address of one or more const objects, the pointer will be classified such that

108

C Language Features Supported Data Types and Variables

it can dereference both memory spaces, and the address will be encoded so that the target memory
space can be determined at runtime.

A 16-bit mixed space pointer is encoded such that if it holds an address that is higher than the
highest general purpose RAM address, it holds the address of a program space object; all other
address reference objects in the data space.

A 24-bit mixed space pointer is encoded such that if bit number #21 is set, it contains the address
of an object in the data space; all other addresses hold the address of a program space object.

TUTORIAL

POINTERS TO DIFFERENT TARGETS A program in the early stages of development
contains the following code;

int getValue(int * ip) {
return 2 + *ip ;

}

void main(void) {

int j, 1 = setV{();

j = getValue (&1)

}

The code generator allocate the variable i to the access bank and the pointer ip (the
parameter to the function getValue) is made an 8-bit wide access bank pointer. At a
later date, the function main is changed, becoming:

void main(void) {
int j, 1 = setV{();
const int start =
j = getValue (&1)

j += getValue (&start);
}

Now the pointer, ip, is assigned addresses of both data and const objects. After the
next compilation the size and encoding of ip will change, as will the code that assigns
the addresses to ip. The generated code that dereferences ip (in getValue) will check
the address to determine the memory space of the target address.

0x10;

3.3.12.5 Function Pointers

Function pointers can be defined to indirectly call functions or routines in the program space. The
size of these pointers are 16 or 24 bits wide and is determined by the amount of program memory

109

Storage Class and Object Placement C Language Features

defined. Function pointers are 16-bits wide for memory spaces less the 64 kbytes in size. For larger
program space memory sizes, these then swap to 3 bytes in size.

It should be stressed that direct calls to functions are not affected by the size of function pointers.
The size of function pointers only affect code calling functions indirectly. The addresses for all code
labels are always shown in the map file as an untruncated 3-byte address regardless of the pointer
size determined by the code generator.

The size of function pointers will affect the number of table pointer registers considered active.

3.4 Storage Class and Object Placement

Objects are positioned in different memory areas dependant on their storage class and declaration.
This is discussed in the following sections.

3.4.1 Local Variables

A local variable is one which only has scope within the block in which it was defined. That is, it
may only be referenced within that block. C supports two classes of local variables in functions:
auto variables which are normally allocated in a compiled stack, and static variables which are
always given a fixed memory location and have permanent duration.

3.4.1.1 Auto Variables

This section discusses allocation of auto variables (those with automatic storage duration). This
also include function parameter variables, which behave like auto variables, as well as temporary
variables defined by the compiler.

The auto (short for automatic) variables are the default type of local variable. Unless explicitly
declared to be static, a local variable will be made auto. The auto keyword may be used if
desired.

The auto variables, as their name suggests, automatically come into existence when a function
is executed, then disappear once the function returns. Since they are not in existence for the entire
duration of the program, there is the possibility to reclaim memory they use when the variables are
not in existence and allocate it to other variables in the program.

Typically such variables are stored on some sort of a data stack, which can easily allocate then
deallocate memory as required by each function. All devices targeted by the compiler do not have
a data stack that can easily be operated in this fashion. As a result, an alternative stack construct is
implemented by the compiler. The stack mechanism employed is known as a compiled stack and is
fully described in Section 3.4.1.1.

Once auto variables have been allocated a relative position in the compiled stack, the stack itself
is then allocated memory in the data space. This is done is a similar fashion to the way non-auto

110

C Language Features Storage Class and Object Placement

variables are assigned memory: a psect is used to hold the stack and this psect is placed into the
available data memory by the linker. The psect used to hold the compiled stack is called cstack,
and like with non-auto variable psects, the psect basename is always used in conjunction with a
linker class name to indicate the RAM bank in which the psect will be positioned. See Section 3.8.1
for the limitations associated with where this psect can be linked.

The auto variables defined in a function will not necessarily be allocated memory in the order
declared, in contrast to parameters which are always allocated memory based on their lexical order.
In fact, auto variables for one function may be allocated in many RAM banks.

The the standard qualifiers: const and volatile may both be used with auto variables and
these do not affect how they are positioned in memory. This implies that a local const-qualified
object is still an auto object and, as such, will be allocated memory in the compiled stack in the data
space memory, not in the program memory like with non-auto const objects.

The compiler will try to locate the stack in one data bank, but if this fills (i.e. if the compiler
detects that the stack has become too large for the free space in a bank), it can build up the stack into
several components (each with their own psect) and link each in a different bank.

Each auto object is referenced in assembly code using a special symbol defined by the code
generator. If you write assembly code that accesses auto variables defined in C source code, you
must use these symbols, which are discussed in Section 3.10.3.

Compiled Stack Operation A compiled stack consists of fixed memory areas that are usable by
each function’s stack-based variables. When a compiled stack is used, functions are not re-entrant
since stack-based variables in each function will use the same fixed area of memory every time the
function is invoked.

Fundamental to the generation of the compiled stack is the call graph, which defines a tree-like
hierarchy of function calls, i.e it shows what functions may be called by each function.

There will be one graph produced for each root function. A root function is typically not called,
but which is executed via other means and contains a program entry point. The function main () is
an example of a root function that will be in every project. Interrupt functions, which are executed
when a hardware interrupt occurs, are another example.

Figure 3.1 shows sections of a program being analyzed by the code generator to form a call
graph. In the original source code, the function main() calls F1 (), F2 () and F3 (). F1() callsF4 (),
but the other two functions make no calls. The call graph for main () indicates these calls. The
symbols F1, F2 and F3 are all indented one level under main. F4 is indented one level under F1.

This is a static call graph which shows all possible calls. If the exact code for function F1 ()
looked like:

int F1l(void) {

if (PORTA == 44)
return F4();

111

Storage Class and Object Placement C Language Features

main { B
F1(.);
F2(.); Call graph
F3(..);
} main
Fl
B F4
F2
F1 { F3
F4(..); isr
} F5
ﬂ F6
isr
F5 {() : Analysis of program
F6(..);
}

Figure 3.1: Formation of Call Graph

return 55;

}

the function F4 () will always appear in the call graph, even though it is conditionally executed in
the actual source code. Thus, the call graph indicates all functions, even those that might be called.

In the diagram, there is also an interrupt function, isr (), and it too has a separate graph gener-
ated.

The term main-line code is often used, and refers to any code that is executed as a result of the
main () function being executed. In the above figure, F1 (), F2(), F3() and F4 () are only ever
called by main-line code.

The term interrupt code refers to any code that is executed as a result of an interrupt being
generated, in the above figure, F5 () and F6 () are called by interrupt code.

Figure 3.2 graphically shows an example of how the compiled stack is formed.

Each function in the program is allocated a block of memory for its parameter, auto and tem-
porary variables. Each block is referred to as an auto-parameter block (APB). The figure shows the
APB being formed for function F2 (), which has two parameters, a and b, and one auto variable, c.

112

C Language Features Storage Class and Object Placement

Formation of auto-parameter block (APB)

o for function F2
D A————— ~a |
F2(int a, int b)--{---- | b F2
char ¢ 7~ -s—¢
} i @ Analysis of call graph
J main
/// /// Fl
// main| ./ F4
¥
‘ F2
r | LS
o e [F3
£ 2 F4 isr
© - F5
. isr F6
\\\ F5L7F6

[3) Overlap of non-concurrently active APBs
to form compiled stack

Figure 3.2: Formation of the Compiled Stack

The parameters to the function are first grouped in an order strictly determined by the lexical
order in which they appear in the source code. These are then followed by any auto objects, however
the auto objects may be placed in any order. So we see memory for a is followed by that for b and
lastly, c.

Once these variables have been grouped, the exact location of each object is not important at this
point and we can represent this memory by one block — the APB for this function.

The APBs are formed for all functions in the program. Then, by analyzing the call graph, these
blocks are assigned positions, or bases values, in the compiled stack.

Memory can be saved if the following point is observed: If two functions are never active at the
same time, then their APBs can be overlapped.

In the example shown in the figure, F4 () and F1 () are active at the same time, in fact F1 () calls
F4 (). However F2 (), F3() and F1 () are never active at the same time; F1 () must return before
F2() or F3() can be called by main (). The function main () will always be active and so its APB
can never overlap with that of an other function.

In the compiled stack, you can see that the APB for main () is allocated unique memory. The
blocks for F1 (), F2 () and F3 () are all placed on top of each other and the same base value in the
compiled stack, however the memory taken up by the APBs for F1 () and F4 () are unique and do

not overlap.
Our example also has an interrupt function, isr (), and its call graph is used to assemble the

113

Storage Class and Object Placement C Language Features

APBs for any interrupt code in the same way. Being the root of a graph, isr () will always be
allocated unique memory, and the APBs for interrupt functions will be allocated memory following.

The end result is a block of memory which forms the compiled stack. This block can then be
placed into the device’s memory by the linker.

For devices with more than one bank of data memory, the compiled stack may be built up into
components, each located in a different memory bank. The compiler will try to allocate the com-
piled stack in one bank, but if this fills, it will consider other banks. The process of building these
components of the stack is the same, but each function may have more than one APB and these will
be allocated to one of the stack components based on the remaining memory in the component’s
destination bank.

Human readable symbols are defined by the code generator which can be used to access auto
and parameter variables in the compiled stack from assembly code, if required. See Section 3.10.4
for full information between C domain and assembly domain symbols.

3.4.1.2 Static Variables

All static variables have permanent storage duration, even those defined inside a function which
are “local static” variables. Local static variables only have scope in the function or block in which
they are defined, but unlike auto variables, their memory is reserved for the entire duration of the
program. Thus they are allocated memory like other non-auto variables. Any static variable may
be accessed by other functions via pointers since they have permanent duration.

Variables which are static are guaranteed to retain their value between calls to a function,
unless explicitly modified via a pointer.

Variables which are static and which are initialized only have their initial value assigned once
during the program’s execution. Thus, they may be preferable over initialized aut o objects which are
assigned a value every time the block in they are defined begins execution. Any initialized static
variables are initialized in the same way as other non-auto initialized objects by the runtime startup
code, see Section 2.3.2.

Local objects which are static are assigned an assembly symbol which consists of the function
name followed by an @ symbol and the variable’s lexical name, e.g. main@foobar will be the
assembly identifier used for the static variable foobar defined in main ().

Non-local static objects use their lexical name with a leading underscore character, e.g. _foobar
will be the assembly identifier used for this object. However, if there is more than one such static
object defined, then subsequent objects will use the name of the file that contains them and their
lexical name separated by an @ symbol, e.g. lcd@foobar would be the assembly symbol for the
static variable foobar defined in lcd.c.

114

C Language Features Storage Class and Object Placement

3.4.2 Absolute Variables

Most variables can be located at an absolute address by following its declaration with the construct @
address, where address is the location in memory where the variable is to be positioned. Such
a variables is known as an absolute variables.

Defining absolute objects can fragment memory and may make it impossible for the linker to
position other objects. Avoid absolute objects if at all possible. If absolute objects must be defined,
try to place them at either end of a memory bank or page so that the remaining free memory is not
frag- mented into smaller chunks.

3.4.2.1 Absolute Variables in Data Memory

Absolute variables are primarily intended for equating the address of a C identifier with a special
function register, but can be used to place ordinary variables at an absolute address in data memory.
For example:

volatile unsigned char Portvar @ 0x06;

will declare a variable called Portvar located at 06h in the data memory. The compiler will re-
serve storage for this object and will equate the variable’s identifier to that address. The compiler-
generated assembler will include a line similar to:

_Portvar EQU 06h

No auto variables can be made absolute as they are located in a compiled stack. See Section 3.4.1.1.
Absolute variables cannot be initialized.

The compiler does not make any checks for overlap of absolute variables with other absolute
variables, so this must be considered when choosing the variable locations. There is no harm in
defining more than one absolute variable to live at the same address if this is what you require. The
compiler will not locate ordinary variables over the top of absolutes, so there is no overlap between
these objects.

3.4.2.2 Absolute Variables in Program Memory

Non-auto objects qualified const can also be made absolute in the same way, however the address
will indicate an address in program memory. For example:

const int settings[] @ 0x200 = { 1, 5, 10, 50, 100 };

Both initialized and uninitialized const objects can be made absolute. That latter is useful when
you only need to define a label in program memory without making a contribution to the output file.

115

Functions C Language Features

3.4.3 Objects in Program Space

Const objects are usually placed in program space. On the PIC18 devices, the program space is
byte-wide, the compiler stores one character per byte location and values are read using the table read
instructions. All const-qualified data objects and string literals are placed in either the smallconst,
mediumconst or const psect, depending on the amount of const data defined in the program. The
appropriate const psect is placed at an address above the upper limit of RAM since RAM and const
pointers use this address to determine if an access to ROM or RAM is required. See Section 3.3.12.

3.4.4 Dynamic Memory Allocation

Dynamic memory allocation, (heap-based allocation using malloc etc.) is not supported with HI-
TECH C. This is due to the limited amount of data memory and the fact that this memory is banked.
The wasteful nature of dynamic memory allocation does not suit itself to the 8-bit PIC18 device
architectures.

3.4.5 Memory Models

HI-TECH C does not use fixed memory models to alter allocation of variables to memory. Memory
allocation is fully automatic and there are no memory model controls.

3.5 Functions

In some situations, the code associated with a function is output more than once. See Section 3.9.4
from more information.

3.5.1 Absolute Functions

The generated code associated with a function can be placed at an absolute address. This can be
accomplished by using an @ address construct in a similar fashion to that used with absolute vari-
ables.

The following example of an absolute function which will place the function label and first
assembly instruction corresponding to the function at address 400h:

int mach_status(int mode) @ 0x400

{
/* function body */

116

C Language Features Functions

Using this construct with interrupt functions will not alter the position of the interrupt context
saving code that precedes the code associated with the interrupt function body. See also Section
2.6.24.

3.5.2 External Functions

If a call to a function that is defined outside the program C source code is required (it may be part of
code compiled separately, e.g. bootloader, or assembly code), you will need to provide a declaration
of the function so that the compiler knows how to encode the call.

If this function takes arguments or returns a value, the compiler may use a symbol to represent the
memory locations used to store these values, see Sections 3.5.3 and 3.5.4 to determine if a register
or memory locations are used in this transfer. If an argument or return value is used and this will be
stored in memory, the corresponding symbol must be defined by your code and assigned the value
of the appropriate memory location.

The value can be determined from the map file of the external build, which compiled the function,
or from the assembly code. If the function was written in C, look for the symbol ?_funcName,
where funcName is the name of the function. It can be defined in the program which makes the
call via a simple EQU directive in assembler. For example, the following could be placed in the C
source.

#asm
GLOBAL ?_extReadFn
?_extReadFn EQU 0x20
#endasm

Alternatively, the assembly code could be contained directly in an assembly module.

If this symbol is not defined, the compiler will issue an undefined symbol error. This error can
be used to verify the name being used by the compiler to encode the call, if required.

It is not recommended to call the function indirectly by casting an integer to a function pointer,
but in such a circumstance, the compiler will use the value of the constant in the symbol name, for
example calling a function at address 200h will require the definition of the symbol 20x200 to be
the location of the parameter/return value location for the function.

Note that the return value of a function (if used) shares the same locations assigned to any
parameters to that function and both use the same symbol.

3.5.3 Function Argument Passing

HI-TECH C uses a fixed convention to pass arguments to a function. The method used to pass the
arguments depends on the size and number of arguments involved.

117

Functions C Language Features

The names “argument” and “parameter” are often used interchangeably, but typically an argu-
ment is the actual value that is passed to the function and a parameter is the variable defined by the
function to store the argument.

The compiler will either pass arguments in the W register, or in the auto-parameter block (APB)
of the called function. If the first parameter is one byte in size, it is passed in the W register. All other
parameters are passed in the APB. This applies to basic types and to aggregate types, like structures.

The parameters are grouped along with the function’s auto variables in the APB and are placed
in the compiled stack. See Section 3.4.1.1 for detailed information on the compiled stack. The
parameter variables will be referenced as an offset from the symbol ?_function, where function is
the name of the function in which the parameter is defined (i.e. the function that is to be called).

Unlike auto variables, parameter variables are allocated memory strictly in the order in which
they appear in the function’s prototype. This means that the parameters will always be placed in
the same memory bank even if the other auto variables for that function have been allocated across
multiple banks.

The parameters for functions that take a variable argument list (defined using an ellipsis in the
prototype) are placed in the parameter memory, along with named parameters.

Take, for example, the following ANSI-style function.

void test (char a, int b);

The function test () will receive the argument for b in its function auto-parameter block and that
for a in the W register. A call to this function:

test (xyz, 8);
would generate code similar to:

MOVLW 08h ; move literal 0x8 into...

MOVWF ?_test ; the auto-parameter memory...

CLRF ?_test+l ; locations for the 16-bit parameter
MOVF _xyz,w ; move xyz into the W register

CALL (_test)

In this example, the parameter b is held in the memory locations ?_test (Least Significant Byte)
and ?_test+1 (Most Significant Byte) which are on the compiled stack. You may also see this same
location referenced as test@b, which is an alternate symbol.

The exact code used to call a function, or the code used to access a parameters from within a
function, can always be examined in the assembly list file. See Section 2.6.19 for the option that
generates this file. This is useful if you are writing an assembly routine that must call a function
with parameters, or accept arguments when it is called. The above example does not consider data
memory banking or program memory paging, which may require additional instructions.

118

C Language Features Operators

3.5.4 Function Return Values

Function return values are passed to the calling function using either the W register, or the function’s
auto-parameter block. Having return values also located in the same memory as that used by the
parameters can reduce the code size for functions that return a modified copy of their parameter.

Eight-bit values are returned from a function in the W register. Values larger than a byte are
returned in the function’s parameter memory area, with the least significant word in the lowest
memory location. This memory area is a block that can be accessed with an offset from the symbol
?_funcName, where funcName is the name of the function that returns the value.

For example, the function:

int return_16 (void) {
return 0x1234;
}

will exit with the code similar to the following :

MOVLW 34h

MOVWE (?_return_16)
MOVLW 12h

MOVWF (?_return_16)+1
RETURN

3.5.4.1 Structure Return Values

Return values that have an aggregate type (e.g. struct and union types), but whose size is 4 bytes
or smaller, are returned in the parameter memory, as is done with return values of basic type. For
aggregate return values greater than 4 bytes in size, the object is also copied to the base of the
function’s parameter area and the address of the copy is returned in the FSRO register.

3.6 Operators

HI-TECH C Compiler for PIC18 MCUs supports all the ANSI operators. The exact results of some
of these are implementation defined. The following sections illustrate code produced by the com-
piler.

3.6.1 Integral Promotion

When there is more than one operand to an operator, they typically must be of exactly the same

type. The compiler will automatically convert the operands, if necessary, so they have the same

119

Operators C Language Features

type. The conversion is to a “larger” type so there is no loss of information. Even if the operands
have the same type, in some situations they are converted to a different type before the operation.
This conversion is called integral promotion. HI-TECH C Compiler for PIC18 MCUs performs
these integral promotions where required. If you are not aware that these changes of type have taken
place, the results of some expressions are not what would normally be expected.

Integral promotion is the implicit conversion of enumerated types, signed or unsigned varieties
of char, short int or bitfield types to either signed int or unsigned int. If the result of the
conversion can be represented by an signed int, then that is the destination type, otherwise the
conversion is to unsigned int.

Consider the following example.

unsigned char count, a=0, b=50;
if(a - b < 10)
count++;

The unsigned char result of a - b is 206 (which is not less than 10), but both a and b are con-
verted to signed int via integral promotion before the subtraction takes place. The result of the
subtraction with these data types is -50 (which is less than 10) and hence the body of the if () state-
ment is executed. If the result of the subtraction is to be an unsigned quantity, then apply a cast.
For example:

if ((unsigned int) (a - b) < 10)
count++;

The comparison is then done using unsigned int, in this case, and the body of the if() would not be
executed.

Another problem that frequently occurs is with the bitwise compliment operator, “~”. This
operator toggles each bit within a value. Consider the following code.

unsigned char count, c;

c = 0x55;
if(~c == 0xAA)
count++;

If ¢ contains the value 55h, it often assumed that ~c will produce AAh, however the result is FFAAh
and so the comparison above would fail. The compiler may be able to issue a mismatched compari-
son error to this effect in some circumstances. Again, a cast could be used to change this behaviour.

The consequence of integral promotion as illustrated above is that operations are not performed
with char-type operands, but with int-type operands. However there are circumstances when the
result of an operation is identical regardless of whether the operands are of type char or int. In
these cases, HI-TECH C Compiler for PIC18 MCUs will not perform the integral promotion so as
to increase the code efficiency. Consider the following example.

120

C Language Features Operators

Table 3.5: Integral division

Operand 1 | Operand 2 | Quotient | Remainder
+ + + +
- + - -
+ - - +
- - + -

unsigned char a, b, c;
a=>b+c;

Strictly speaking, this statement requires that the values of b and ¢ should be promoted to unsigned
int, the addition performed, the result of the addition cast to the type of a, and then the assignment
can take place. Even if the result of the unsigned int addition of the promoted values of b and ¢
was different to the result of the unsigned char addition of these values without promotion, after
the unsigned int result was converted back to unsigned char, the final result would be the same.
An 8-bit addition is more efficient than a 16-bit addition and so the compiler will encode the former.

If, in the above example, the type of a was unsigned int, then integral promotion would have
to be performed to comply with the ANSI standard.

3.6.2 Shifts applied to integral types

The ANSI standard states that the result of right shifting (>> operator) signed integral types is
implementation defined when the operand is negative. Typically, the possible actions that can be
taken are that when an object is shifted right by one bit, the bit value shifted into the most significant
bit of the result can either be zero, or a copy of the most significant bit before the shift took place.
The latter case amounts to a sign extension of the number.

PICC18 performs a sign extension of any signed integral type (for example signed char,
signed int or signed long). Thus an object with the signed int value 0124h shifted right one
bit will yield the value 0092h and the value 8024h shifted right one bit will yield the value CO12h.

Right shifts of unsigned integral values always clear the most significant bit of the result.

Left shifts (< < operator), signed or unsigned, always clear the least significant bit of the result.

3.6.3 Division and modulus with integral types

The sign of the result of division with integers when either operand is negative is implementation
specific. 3.5 shows the expected sign of the result of the division of operand 1 with operand 2 when
compiled with PICC18.

In the case where the second operand is zero (division by zero), the result will always be zero.

121

Register Usage C Language Features

Table 3.6: Registers Used by the Compiler

Register Name Description

W The working register

STATUS The Status register

PCLATx Upper holding registers of the program counter*
FSRx Indirect data memory address pointer*

TBLPTR Indirect program memory address pointer*
PROD Product result register*

BSR Bank select register

3.7 Register Usage

The assembly generated from C source code by the compiler will use certain registers that are present
on the PIC18 MCU device. Most importantly, the compiler assumes that nothing other than code it
generates can alter the contents of these registers. So if the assembly loads a register with a value
and no subsequent code generation requires this register, the compiler will assume that the contents
of the register are still valid later in the output sequence.

The registers that are special and which are used by the compiler are listed in Table 3.6. Those
register starred (*) in the description are multi-byte registers; all components are used by the com-
piler.

The state of these register must never be changed directly by C code, or by any assembly code
in-line with C code. The following example shows a C statement and in-line assembly that violates
these rules and changes the ZERO bit in the STATUS register.

#include <htc.h>
void getInput (void) {
ZERO = 0xl; // do not write using C code
c = read();
#asm
bcf ZERO_bit ; do not write using in-line assembly code
#endasm
process(c);

}

HI-TECH C is unable to interpret the meaning of in-line assembly code that is encountered in C
code. Nor does it associate a variable mapped over an SFR to the actual register itself. Writing to an
SFR register using either of these two methods will not flag the register as having changed and may
lead to code failure.

122

C Language Features Psects

3.8 Psects

When the code generator outputs code and data objects, it does so into a number of standard “pro-
gram sections”, referred to as psects. A psect is just a block of something: a block of code; a block
of data etc. By having everything inside a psect, all these blocks can be easily recognized and sorted
by the linker, even though they have come from different modules.

One of the main jobs of the linker is to group all the psects from the entire project and place
these into the available memory for the device.

A psect can be created in assembly code by using the PSECT assembler directive (see Section
4.3.10.3). The code generator uses this directive to direct assembly code it produces into the appro-
priate psect.

3.8.1 Compiler-generated Psects

The code generator places code and data into psects with standard names which are subsequent
positioned by the default linker options. The linker does not treat these compiler-generated psects
any differently to a psect that has been defined by yourself.

Some psects, in particular the data memory psects, use special naming conventions.

For example, take the bss psect. The name bss is historical. It holds uninitialized variables.
However there may be some uninitialized variables that will need to be located in bank 0 data mem-
ory; others may need to be located in bank 1 memory. As these two groups of variables will need
to be placed into different memory banks, they will need to be in separate psects so they can be
independently controlled by the linker. In addition, the uninitialized variables that are bit variables
need to be treated specially so they need their own psect. So there are a number of different psects
that all use the same basename, but which have prefixes and suffixes to make them unique.

The general form of these psect names is:

[bit]lpsectBaseNameCLASS|[div]

where psectBaseName is the base name of the psect, such as bss.The CLASS is a name derived
from the linker class (see Section 5.7.2) in which the psect will be linked, e.g. BANKO. The prefix
bit is used if the psect holds bit variables. So there may be psects like: bssBANKO, bssBANK1 and
bitbssBANKO defined by the compiler to hold the uninitialized variables.

If a psect has to be split into two ranges, then the letters 1 (elle) and h are used as di v to indicate
if it is the lower or higher division. A psect would be split if memory in the middle of a bank has been
reserved, or is in some way not available to position objects. If an absolute variable is defined and
is located anywhere inside a memory range, that range will need to be split to ensure that anything
in the psects located there do not overwrite the absolute object. Thus you might see bssBANKO1 and
bssBANKOh psects if a split took place.

The contents of these psects are described below, listed by psect base name.

123

Psects C Language Features

3.8.1.1 Program Space Psects

checksum This is a psect that is used to mark the position of a checksum that has been requested
using the --CHECKSUM option, see Section 2.6.20. The checksum value is added after the
linker has executed so you will not see the contents of this psect in the assembly list file, nor
specific information in the map file.
Linking this psect at a non-default location will have no effect on where the checksum is
stored, although the map file will indicate it located at the new address. Do not change the
default linker options relating to this psect.

cinit Used by the C initialization runtime startup code. Code in this psect is output by the code
generator along with the generated code for the C program (look for it in the project’s assembly
list file) and does not appear in the runtime startup assembly module.
This psect can be linked anywhere in the program memory, provided they does not interfere
with the requirements of other psects. (It should not cross a 4000h address boundary for
devices where this is a published errata.)

config Used to store the configuration words.
Do not change the default linker options relating to this psect.

const These psects hold objects that are declared const and string literals which are not modifiable.
Used when the total amount of const data in a program exceeds 64k.
This psect can be linked anywhere in the program memory provided it does not interfere with
the requirements of other psects.

eeprom_data Used to store data to be programmed into the EEPROM data area.
Do not change the default linker options relating to this psect.

end_init Used by initialization code in the startup.as module that transfers control to the main
function. (It should not cross a 4000h address boundary for devices where this is a published
errata.)

idata These psects contain the ROM image of any initialised variables. These psects are copied
into the data psects at startup. In this case, the class name is used to describe the class of the
corresponding RAM-based data psect. These psects will be stored in program memory, not
the data memory space.
This psect can be linked anywhere in the program memory, provided it does not interfere with
the requirements of other psects.

idloc Used to store the ID location words.
Do not change the default linker options relating to this psect.

124

C Language Features Psects

init Used by initialisation code in the startup.as module. This code deals with setting up the
target device.
This psect can be linked anywhere in the program memory provided it does not interfere with
the requirements of other psects. (It should not cross a 4000h address boundary for devices
where this is a published errata.)

intcode Is the psect which contains the executable code for the default or high-priority interrupt
service routine. This psect is linked to interrupt vector at address 08H.
Do not change the default linker options relating to this psect. See Section 2.6.24 if you want
to move code when using a bootloader.

intcodelo Is the psect which contains the executable code for the low-priority interrupt service rou-
tine. This psect is linked to interrupt vector at address 018H.
Do not change the default linker options relating to this psect. See Section 2.6.24 if you want
to move code when using a bootloader.

mediumconst These psects hold objects that are declared const and string literals which are not
modifiable. Used when the total amount of const data in a program exceeds 255 bytes, but
does not exceed 64k.
This psect can be linked anywhere in the lower 64k of program memory provided it does not
interfere with the requirements of other psects.

powerup This contains executable code for the standard or user-supplied power-up routine.
Do not change the default linker options relating to this psect.

smallconst These psects hold objects that are declared const and string literals which are not mod-
ifiable. Used when the total amount of const data in a program is less than 255 bytes.
This psect can be linked anywhere in the program memory, provided it does not cross a 100h
boundary or interfere with the requirements of other psects.

textn Is a global psect used for executable code and library functions. n is a number. The code
associated with each function will be placed a unique text psect.
These psects can be linked anywhere in the program memory, provided they do not interfere
with the requirements of other psects. (It should not cross a 4000h address boundary for
devices where this is a published errata.)

3.8.1.2 Data Space Psects

bss These psects contain any uninitialized variables. These psects may be linked anywhere in their
targeted memory bank and should not overlap access bank memory.

125

Interrupt Handling in C C Language Features

cstack These psects contain the compiled stack. On the stack are auto, temporary and parameter
variables for the entire program. See Section 3.4.1.1 for information on the compiled stack.
These psects may be linked anywhere in their targeted memory bank and should not overlap
access bank memory.

data These psects contain the RAM image of any initialized variables. These psects may be linked
anywhere in their targeted memory bank and should not overlap access bank memory.

nv These psects are used to store variables qualified persistent. They are not cleared or otherwise
modified at startup. These psects may be linked anywhere in their targeted memory bank, but
should not overlap access bank memory.

3.9 Interrupt Handling in C

The compiler incorporates features allowing interrupts to be handled from C code. Interrupt func-
tions are often called interrupt service routines (ISR). Interrupts are also known as exceptions. PIC18
devices have two separate interrupt vectors and a priority scheme to dictate how the interrupt code
is called.

3.9.1 Interrupt Functions

The function qualifier interrupt may be applied to at most two functions to allow them to be called
directly from the hardware interrupts. The compiler will process the interrupt function differently
to any other functions, generating code to save and restore any registers used and exit using the
retfie instruction instead of a ret 1w or return instructions at the end of the function.

(If the PICC18 option ——STRICT is used, the interrupt keyword becomes __interrupt. Wher-
ever this manual refers to the interrupt keyword, assume __interrupt if you are using --STRICT.)

The PIC18 devices have two interrupts, each with their own vector location. These have different
priorities and are known as low-priority and high-priority interrupts. If the PIC18 is placed in com-
patibility mode, only one interrupt is available and this defaults to being the high-priority interrupt.
An interrupt function must be declared as type interrupt void and may not have parameters. In
addition, the keyword low_priority may be used to indicate that the interrupt function is to be
linked with the low-priority vector when not in compatibility mode. Interrupt functions may not
be called directly from C code, but they may call other functions itself, subject to certain limitations.
Once defined, the corresponding interrupt vector is linked to the interrupt function.

An example of a high-priority (default) interrupt function is shown here.

long tick_count;
void interrupt tc_int (void) {

126

C Language Features Interrupt Handling in C

++tick_count;

}
A low-priority interrupt function may be defined as in the following example.

void interrupt low_priority tc_clr(void) {
tick_count = 0;

}

It is up to the user to determine and set the priority levels associated with each interrupt source on
the PIC18 devices. Defining a low-priority interrupt function does not put the PIC into interrupt-
priority mode.

Low- and high-priority interrupt functions have their own separate areas of memory in which
to save context, thus a high-priority interrupt function may interrupt a low-priority interrupt
function with no loss of data. The high-priority interrupt can also employ the devices’ shadow
registers to enable rapid context switching during the entry and exit of the service routine.

The interrupt_level pragma may be used with either or both interrupt functions in the
usual way.

3.9.2 Context Switching

The compiler can deal with saving and restoration of the program’s state when an interrupt occurs.

3.9.2.1 Context Saving

Some registers are automatically saved by the hardware when an interrupt occurs. Any registers or
compiler temporary objects used by the interrupt function, other than those saved by the hardware,
must be saved in software. This is the context save, or context switch code.

By default, the high-priority interrupt function will utilize a fast interrupt switch technique
where the W, STATUS and BSR registers are saved and restored via the devices’ internal shadow
registers. This minimizes code size and reduces the instruction cycles to access the high-priority
service routine. Note that for some older devices, the compiler will not use the shadow registers if
compiling for the MPLAB ICD debugger, as the debugger itself utilizes these shadow registers.

The compiler fully determines which registers and objects are used by an interrupt function, or
any of the functions that it calls (based on the call graph generated by the compiler), and saves these
appropriately.

Assembly code placed in-line within the interrupt function is not scanned for register usage.
Thus, if you include in-line assembly code into an interrupt function, you may have to add extra
assembly code to save and restore any registers or locations used. The same is true for any assembly
routines called by the interrupt code.

127

Interrupt Handling in C C Language Features

3.9.2.2 Context Retrieval

Any objects saved by software are automatically restored by software before the interrupt function
returns. The order of restoration is the reverse to that used when context is saved.

The RETFIE instruction placed at the end of the interrupt code will reload the program counter
and the program will return to the location at which it was when the interrupt occurred. If the shadow
registers were used to save context, a RETFIE f instruction is used to indicate that the contents of
the shadow registers should be reloaded to their corresponding register.

3.9.3 Enabling Interrupts

Two macros are available, once you have included <htc.h>, which control the masking of all avail-
able interrupts. These macros are ei (), which enable or unmask all interrupts, and di (), which
disable or mask all interrupts.

On all PIC18 devices, they affect the GIE bit in the INTCON register. These macros should be
used once the appropriate interrupt enable bits for the interrupts that are required in a program have
been enabled.

For example:

ADIE = 1; // A/D interrupts will be used

PEIE = 1; // all peripheral interrupts are enabled
ei(); // enable all interrupts

//

di(); // disable all interrupts

Never use this macro to re-enable interrupts inside the interrupt function itself. Interrupts are au-
tomatically re-enabled by hardware on execution of the RETFIE instruction. Re-enabling interrupts
inside an interrupt function may result in code failure.

3.9.4 Function Duplication

It is assumed by the compiler that an interrupt may occur at any time. As all functions are not
reentrant (because of the dependence on the compiled stack for local objects, see Section 3.4.1.1),
if a function appears to be called by an interrupt function and by main-line code this could normally
lead to code failure.

HI-TECH C has a feature which will duplicate the output associated with any function called
from more than one call tree in the program’s call graph. There will be one call tree associated with
main-line code, and one tree for the interrupt function, if defined.

128

C Language Features Interrupt Handling in C

Main-line code will call the original function’s output, and the interrupt will call the duplicated
function’s output. The duplication takes place only in the called function’s output; there is no du-
plication of the C source code itself. The duplicated code and data uses different symbols and are
allocated different memory, so are fully independent.

This is similar to the process you would need to undertake if this feature was not implemented in
the compiler: the C function could be duplicated by hand, given different names and one called from
main-line code; the other from the interrupt function. However, you would have to maintain both
functions, and the code would need to be reverted if it was ported to a compiler which did support
reentrancy.

The compiler-generated duplicate will have unique identifiers for the assembly symbols used
within it. The identifiers consists of the same name used in the original output prefixed with the
symbol 11.

The output of the function called from main-line code will not use any prefixes and the assembly
names will be those normally used.

To illustrate, in a program the function main calls a function called input. This function is also
called by an interrupt function.

Examination of the assembly list file will show assembly code for both the original and dupli-
cate function outputs. The output corresponding to the C function input () will use the assembly
label _input. The corresponding label used by the duplicate function will be 11_input. If the
original function makes reference to a temporary variable, the generated output will use the symbol
??_input, compared to ??i1_input for the duplicate output. Even local labels within the function
output will be duplicated in the same way. The call graph, in the assembly list file, will show the
calls made to both of these functions as if they were independently written. These symbols will also
be seen in the map file symbol table.

This feature allows the programmer to use the same source code with compilers that use either
reentrant or non-reentrant models. It does not handle cases where functions are called recursively.

Code associated with library functions are duplicated in the same way. This also applies to
implicitly called library routines, such as those that perform division or floating-point operations
associated with C operators.

3.9.4.1 Disabling Duplication

The automatic duplication of the function may be inhibited by the use of a special pragma.

This should only be done if the source code guarantees that an interrupt cannot occur while the
function is being called from any main-line code. Typically this would be achieved by disabling
interrupts before calling the function. It is not sufficient to disable the interrupts inside the function
after it has been called; if an interrupt occurs when executing the function, the code may fail. See
Section 3.9.3 for more information on how interrupts may be enabled and disabled.

The pragma is:

129

Interrupt Handling in C C Language Features

#pragma interrupt_level 1

The pragma should be placed before the definition of the function that is not to be duplicated. The
pragma will only affect the first function whose definition follows.

For example, if the function read () is only ever called from main-line code when the interrupts
are disabled, then duplication of the function can be prevented if it is also called from an interrupt
function as follows.

#pragma interrupt_level 1
int read(char device)
{
//
}

In main-line code, this function would typically be called as follows:

di(); // turn off interrupts
read (IN_CHI);
ei(); // re-enable interrupts

3.9.5 Interrupt Registers

It is up to the user how they want the interrupt source configured. All the registers and bits associated
with interrupts are defined in the specific header file which can be accessed by including <htc.h>.
The following is an example of setting up the interrupts associated with the change-on-PORTB
source. Interrupt priorities are used and the interrupt source is made a low priority. See your PIC18
datasheet for more information.

void main (void) {

TRISB = 0x80; // Only RB7 will interrupt on change
IPEN 1; // Interrupt priorities enabled

PEIE = 1; // enable peripheral interrupts

RBIP = 0; // make this a low priority interrupt
RBIE = 1; // enable PORTB change interrupt

RBIF = 0; // clear any pending events

GIEL = 1; // enable low-priority interrupts
while(1)continue; // sit here and wait for interrupt

}
void interrupt low_priority b_change (void) {
if (RBIE && RBIF) {

130

C Language Features Mixing C and Assembly Code

PORTB; // Read PORTB to clear any mismatch
RBIF = 0; // clear event flag
// process interrupt here

3.10 Mixing C and Assembly Code

Assembly code can be mixed with C code using three different techniques. The following section
describes writing assembly code in separate assembly modules. The subsequent section looks at two
methods of having assembly code being placed in-line with C code.

The following sections describe consideration of mixing Assembly with C code, and some of the
special features the compiler uses to allow for assembly-C code interaction.

3.10.1 External Assembly Language Functions

Entire functions may be coded in assembly language as separate .as source files, assembled by the
assembler, ASPIC18, and combined into the binary image using the linker. Assembly source files
must not have the same basename os the project name if you are using MPLAB IDE v8.

The following are guidelines that must be adhered to when writing a routine in assembly code
that is callable from C code.

e select, or define, a suitable psect for the executable assembly code
e select a name (label) for the routine so that its corresponding C identifier is valid
e cnsure that the routine’s label is globally accessible, i.e. from other modules

e select an appropriate equivalent C prototype for the routine on which argument passing can be
modelled

e optionally, use a signature value to enable type checking of parameters when the function is
called

e Limit arguments and return values to single byte-sized objects (Assembly routines may not
define variables that reside in the compiled stack. Use global variables for additional argu-
ments.

A mapping is performed on the names of all C functions and non-static global variables. See
3.10.3 for a description of mappings between C and assembly identifiers.

131

Mixing C and Assembly Code C Language Features

TUTeRIAL

C-CALLABLE ASSEMBLY ROUTINES The following example goes through the steps
of creating an assembly routine. A mapping is performed on the names of all C functions
and non-static global variables. See Section 3.10.4 for a complete description of
mappings between C and assembly identifiers.

An assembly routine is required which can add an 8-bit quantity passed to the routine
with the contents of PORTB and return this as an 8-bit quantity.

Most compiler-generated executable code is placed in psects called textn, where n is
a number. (see Section 3.8.1). We will create our own text psect based on the psect the
compiler uses. Check the assembly list file to see how the text psects normally appear.
You may see a psect such as the following generated by the code generator.

PSECT text0,local,class=CODE, reloc=2

TUTORIAL

See Section 4.3.10.3 for detailed information on the flags used with the PSECT assembler
directive. This psect is called text0. It is flagged local, which means that it is distinct
from other psects with the same name. It lives in the CODE class. This flag is important
as it means it will be automatically placed in the area of memory set aside for code.
With this flag in place, you do not need to adjust the default linker options to have
the psect correctly placed in memory. The last option, the reloc value, is also very
important. This indicates that the psect must start on an even address boundary. The
PIC18 program memory space is byte addressable and instructions must be aligned on
an even address.

We simply need to choose a different name, so we might choose the name mytext, as
the psect name in which we will place out routine, so we have:

PSECT mytext,local,class=CODE, reloc=2

TUTORIAL

Let’s assume we would like to call this routine add in the C domain. In assembly
domain we must choose the name _add as this then maps to the C identifier add. If
we had chosen add as the assembly routine, then it could never be called from C code.
The name of the assembly routine is the label that we will place at the beginning of the
assembly code. The label we would use would look like this.

132

C Language Features Mixing C and Assembly Code

_add:

TUTORIAL

We need to be able to call this from other modules, some make this label globally
accessible, by using the GLOBAL assembler directive (Section 4.3.10.1).

GLOBAL _add

TUTORIAL

By compiling a dummy C function with a similar prototype to this assembly routine,
we can determine the signature value. The C-equivalent prototype to this routine would
look like:

char add(char);

TUTORIAL

Check the assembly list file for the signature value of such a function. Signature values
are not mandatory, but allow for additional type checking to be made by the linker. We
determine that the following SIGNAT directive (Section 4.3.10.21) can be used.

SIGNAT _add, 4217

TUTORIAL

The W register will be used for passing in the argument.

Here is an example of the complete routine which could be placed into an assembly file
and added to your project. The GLOBAL and SIGNAT directives do not generator code,
and hence do not need to be inside the mytext psect, although you can place them there
if you prefer. The BANKSEL directive and BANKMASK macro have been used to ensure
that the correct bank was selected and that all addresses are masked to the appropriate
size.

133

Mixing C and Assembly Code C Language Features

#include <picl8.inc>
GLOBAL _add ; make _add globally accessible
SIGNAT _add, 4217 ; tell the linker how it should be called
; everything following will be placed into the mytext psect
PSECT mytext, local,class=CODE,delta=2
; our routine to add WREG to PORTB and return the result
; W is loaded by the calling function
_add:
BANKSEL (PORTB) ; select the bank of this object
ADDWF BANKMASK (PORTB),w ; add parameter to port
; the result is already in the required location (W)
; so we can just return immediately
RETURN

TUTORIAL

To compile this, the assembly file must be preprocessed as we have used the C prepro-
cessor #include directive. See Section 2.6.12.

To call an assembly routine from C code, a declaration for the routine must be pro-
vided. This ensures that the compiler knows how to encode the function call in terms of
parameters and return values.

Here is a C code snippet that declares the operation of the assembler routine, then calls
the routine.

// declare the assembly routine so it can be correctly called
extern unsigned char add(unsigned char a);
void main (void) {

volatile unsigned char result;

a = read_port();

result = add(5); // call the assembly routine

3.10.2 #asm, #endasm and asm()

PIC18 instructions may also be directly embedded “in-line” into C code using the directives #asm,
#endasm or the statement asm ().

The #asmand #endasm directives are used to start and end a block of assembly instructions which
are to be embedded into the assembly output of the code generator. The #asm and #endasm construct

134

C Language Features Mixing C and Assembly Code

is not syntactically part of the C program, and thus it does not obey normal C flow-of-control rules,
however you can easily include multiple instructions with this form of in-line assembly.

The asm () statement is used to embed a single assembler instruction. This form looks and be-
haves like a C statement, however each instruction must be encapsulated within an asm () statement.

You should not use a #asm block within any C constructs such as if, while, do etc.
In these cases, use only the asm("") form, which is a C statement and will correctly
interact with all C flow-of-control structures.

The following example shows both methods used to rotate a byte left through carry:

unsigned char var;
void main(void) {
var = 1;
#asm // like this...
movlb (_var) >> 8
rlcf (_var)&0ffh,f
#endasm
asm(“movlb (_var)>>8");
asm(“rlcf (_var)&0ffh,f"”);
}

When using in-line assembly code, great care must be taken to avoid interacting with compiler-
generated code. If in doubt, compile your program with the PICC18 -S option and examine the
assembly code generated by the compiler.

IMPORTANT NOTE: the #asm and #endasm construct is not syntactically part of the C program,
and thus it does not obey normal C flow-of-control rules. For example, you cannot use a #asm block
with an if statement and expect it to work correctly. If you use in-line assembler around any C
constructs such as if, while, do etc. then you should use only the asm("") form, which is a C
statement and will correctly interact with all C flow-of-control structures.

3.10.3 Accessing C objects from within Assembly Code

Global C objects may be directly accessed from within assembly code using their name prepended
with an underscore character. For example, the object foo defined globally in a C module:

int foo;

135

Mixing C and Assembly Code C Language Features

may be access from assembler as follows.

GLOBAL _foo
movwf _foo

If the assembler is contained in a different module, then the GLOBAL assembler directive should be
used in the assembly code to make the symbol name available, as above. If the object is being
accessed from in-line assembly in another module, then an extern declaration for the object can be
made in the C code, for example:

extern int foo;

This declaration will only take effect in the module if the object is also accessed from within C code.
If this is not the case then, an in-line GLOBAL assembler directive should be used. Care should be
taken if the object is defined in a bank other than 0. The address of a C object includes the bank
information which must be stripped before the address can be used in most PIC18 instructions. The
exceptions are the movff and 1sfr instructions. Failure to do this may result in fixup errors issued
by the linker. If in doubt as to writing assembler which access C objects, write code in C which
performs a similar task to what you intend to do and study the assembler listing file produced by the
compiler.

C identifiers are assigned different symbols in the output assembly code so that an as-
sembly identifier cannot conflict with an identifier defined in C code. If assembly pro-
grammers choose identifier names that do not begin with an underscore, these identifiers
will never conflict with C identifiers. Importantly, this implies that the assembly identi-
fier, 1, and the C identifier i relate to different objects at different memory locations.

3.10.3.1 Accessing special function register names from assembler

If writing separate assembly modules, SFR definitions will not automatically be accessible.

The assembly header file <pic18.inc> can be used to gain access to these register definitions
from separate assembly modules. Do not use this header for assembly in-line with C code as it will
clash with definitions in <htc.h>.

Include the file using the assembler’s INCLUDE directive, (see Section 4.3.11.4) or use the C
preprocessor’s #include directive (see Section 3.11.2). If you are using the latter method, make
sure you compile with the -P driver option to preprocess assembly files, see Section 2.6.12.

136

C Language Features Mixing C and Assembly Code

The symbols in this header file look similar to the identifiers used in the C domain when including
<htc.h>, e.g. PORTA, EECON1 etc. They are different symbols in different domains, but will map to
the same memory location.

Bits within registers are defined as the registerName, bitNumber. So for example, RAO is
defined as PORTA, 0.

Here is an example of an assembly module that uses SFRs.

#include <picl8.inc>
GLOBAL _setports
PSECT text,class=CODE, local, reloc=2
_Setports:
MOVLW OxAA
BANKSEL (PORTA)
MOVWE BANKMASK (PORTA)
BANKSEL (PORTB)
BSF RB1

If you wish to access register definitions from assembly that is in-line with C code, different defini-
tions need to be used, but these are already available once you include the <htc.h> header file for
the C part of the module.

The symbols used for register names will be the same as those defined by <picl8.inc>; how-
ever, the names assigned to bit variables within the registers will include the suffix _bit. So for
example, the example given previously could be rewritten as in-line assembly as follows.

#include <htc.h>
#asm MOVLW OxAA
BANKSEL (PORTA)
MOVWF BANKMASK (PORTA)
BANKSEL (PORTB)
BSF RB1_bits
#endasm

Care must be taken to ensure that you do not destroy the contents of registers that are holding
intermediate values of calculations. Some registers are used by the compiler and writing to these
registers directly can result in code failure. The compiler does not detect when SFRs have changed
as a result of assembly code that writes to them directly. The list of registers used by the compiler
and further information can be found in Section 3.7.

137

Mixing C and Assembly Code C Language Features

3.10.4 Interaction between Assembly and C Code

HI-TECH C Compiler for PIC18 MCUs incorporates several features designed to allow C code to
obey requirements of user-defined assembly code.

The command-line driver ensures that all user-defined assembly files have been processed first,
before compilation of C source files begin. The driver is able to read and analyse certain information
in the relocatable object files and pass this information to the code generator. This information is
used to ensure the code generator takes into account requirement of the assembly code.

3.10.4.1 Absolute Psects

Some of the information that is extracted from the relocatable objects by the driver relates to absolute
psects, specifically psects defined using the abs and ovrld, PSECT flags, see Section 4.3.10.3 for
more information. These are psects have been rarely required in general coding, but do allow for
data to be collated over multiple modules in a specific order.

HI-TECH C Compiler for PIC18 MCUs is able to determine the address bounds of absolute
psects to enure that the output of C code does not consume specific resources required by the assem-
bly code. The code generator will ensure that any memory used by these psects are reserved and not
used by C code. The linker options are also adjusted by the driver to enure that this memory is not
allocated.

TUTeRIAL

PROCESSING OF ABSOLUTE PSECTS An assembly code files defines a table that must
be located at address 210h in the data space. The assembly file contains:

PSECT lkuptbl, class=RAM, space=1,abs,ovlrd

ORG 210h

lookup:

ds 20h

When the project is compiled, this file is assembled and the resulting relocatable object
file scanned for absolute psects. As this psect is flagged as being abs and ovlrd, the
bounds and space of the psect will be noted — in this case a memory range from address
210h to 22fh in memory space 1 is being used. This information is passed to the code
generator to ensure that these address spaces are not used by C code. The linker will
also be told to remove these ranges from those available, and this reservation will be
observable in the map file. The RAM class definition, for example, may look like:

-ARAM=00h-0FFhx2,0200h-020Fh, 0230h-02FFh, 0300h-03FFhx3

for an 18F452 device, showing that addresses 210h through 22F were reserved from this
class range.

138

C Language Features Preprocessing

3.104.2 Undefined Symbols

Variables can be defined in assembly code if required, but in some instances it is easier to do so in
C source code, in other cases, the symbols may need to be accessable from both assembly and C
source code.

A problem can occur if there is a variable defined in C code, but is never referenced throughout
the entire the C program. In this case, the code generator may remove the variable believing it is
unused. If assembly code is relying on this definition an error will result.

To work around this issue, HI-TECH C Compiler for PIC18 MCUs also searches assembly-
derived object files for symbols which are undefined. These will typically be symbols that are used,
but not defined, in assembly code. The code generator is informed of these symbols, and if they
are encountered in the C code the variable is automatically marked as being volatile. This is the
equivalent of the programmer having qualified the variable as being volatile in the source code,
see Section 3.3.10. Variables qualified as volatile will never be removed by the code generator,
even if they appear to be unused throughout the program.

TUT®RIAL

PROCESSING OF UNDEFINED SYMBOLS A C source module defines a global variable
as follows:

int input;

but this variable is only ever used in assembly code. The assembly module(s) can simply
declare and link in to this symbol using the GLOBAL assembler directive, and them make
use of the symbol.

GLOBAL _input
PSECT text,class=CODE, reloc=2
movff PORTA,_input

In this instance the C variable input will not be removed and be treated as if it was
qualified volatile.

3.11 Preprocessing

All C source files are preprocessed before compilation. Assembler files can also be preprocessed if
the -P command-line option is issued, see Section 2.6.12.

139

Preprocessing C Language Features

3.11.1 C Language Comments

HI-TECH C Compiler for PIC18 MCUs accepts both block and in-line (C99 standard) C source
comments, as shown in the following examples. In-line comments are normally termined by the
newline character, however they can span multiple lines when the line is terminated with a backslash
character.

/* I am a block comment

that can run over more

than one line of source */

// I am an in-line comment

// I am an in-line comment \
that spans two lines

Both these comment styles can be used, in addition to the standard assembly comment (see Section
4.3.5), in assembly source code if the -P command-line option is issued, see Section 2.6.12.
All comments are removed by the C preprocessor before being passed to the parser application.

3.11.2 Preprocessor Directives

HI-TECH C Compiler for PIC18 MCUs accepts several specialised preprocessor directives in addi-
tion to the standard directives. All of these are listed in Table 3.7.

Macro expansion using arguments can use the # character to convert an argument to a string, and
the ## sequence to concatenate tokens.

3.11.3 Predefined Macros

The compiler drivers define certain symbols to the preprocessor (CPP), allowing conditional com-
pilation based on chip type etc. The symbols listed in Table 3.8 show the more common symbols
defined by the drivers. Each symbol, if defined, is equated to 1 unless otherwise stated.

Symbol When set Usage
HI_TECH_C When not in C18 To indicate that the compiler in use is HI-
compatibility mode TECH C.
_HTC_EDITION_ Always To indicate which of PRO, STD or Lite
_HTC_EDITION_ compiler is in use. Val-
ues of 2, 1 or 0 are assigned respectively.

continued. . .

140

C Language Features

Preprocessing

_HTC_VER_MAJOR_ Always To indicate the integer component of the
compiler’s version number.
_HTC_VER_MINOR_ Always To indicate the decimal component of the
compiler’s version number.
_HTC_VER_PATCH_ Always To indicate the patch level of the com-
piler’s version number.
__PICC18__ When not in C18 To indicate the use of a HI-TECH PICC-18
compatibility mode compiler.
MPC When not in C18 To indicate the code is compiled for the
compatibility mode Microchip PIC family.
_PIC18 When not in C18 To indicate that this is a PIC18 device.
compatibility mode
_ROMSIZE Always To indicate the number of bytes of program
space this device has.
_RAMSIZE Always To indicate the number of bytes of data
space this device has.
_EEPROMSIZE If EEPROM is present To indicate if EEPROM memory is present
and how many bytes are available.
_FLASH_ERASE_SIZE | Always To indicate the number of bytes erased in a
single flash-erase operation at runtime.
_FLASH_WRITE_SIZE Always To indicate the number of bytes erased in a

single flash-write operation at runtime.

_ MPLAB_REALICE_

--DEBUGGER=REALICE

To indicate that the code is being generated
for the Microchip Realice debugger.

__MPLAB PICKIT2___

—-DEBUGGER=PICKIT2

To indicate that the code is being generated
for the Microchip PICKIT2 debugger.

_ MPLAB PICKIT3__

--DEBUGGER=PICKIT3

To indicate that the code is being generated
for the Microchip PICKIT3 debugger.

_ MPLAB_ICD__

--DEBUGGER=ICD2/ICD3

To indicate that the code is being generated
for the Microchip ICD In-Circuit debugger.
Value is 2 or 3.

_ICDROM_START

--DEBUGGER=ICD2/ICD3

Defined the start address of the ICD’s re-
served program space

_ICDROM_END

—--DEBUGGER=ICD2/ICD3

Defined the end address of the ICD’s re-
served program space

continued. . .

141

Preprocessing

C Language Features

_ERRATA_TYPES

Always

Defines a bitmask to show which types
of silicon errata may be applicable to this
build.

errata_type

When errata workaround
is employed

Defined when the errata workaround is ap-
plied, e.g. ERRATA_4000_BOUNDARY

__OPTIMIZE type

When optimization is
enabled

To indicate if speed or space optimizations
are enabled with __ OPTIMIZE_SPEED__ or
_ OPTIMIZE_SPACE_

_chipname When chip selected To indicate the specific chip type selected,
e.g. _18F452

__chipname When chip selected To indicate the specific chip type selected,
e.g. _ 18F452

device FAMILY Always To indicate the device family grouping,

as determined by the device INI file, e.g.
_18FXX2_FAMILY

__J_PART When compiling for a’J’ To indicate target device has a ’J’ in its
device name.

__18CXX When in C18 To indicate the compiler is operating in
compatibility mode C18 compatibility mode

__TRADITIONALI8__ | Whenin CI18 To indicate the compiler is operating in
compatibility mode and C18 compatibility mode and the extended
using the tradition instruction set is not enabled.
instruction set

__EXTENDED18___ When in C18 To indicate the compiler is operating in
compatibility mode and C18 compatibility mode and the extended
using the extended instruction set is enabled.
instruction set

_ SMALL__ When in C18 To indicate the compiler is operating in
compatibility mode and C18 compatibility mode and the small
the memory model is small | memory model is being used.

__LARGE__ When in C18 To indicate the compiler is operating in
compatibility mode and C18 compatibility mode and the large
the memory model is large | memory model is being used.

__FILE__ Always To indicate this source file being prepro-

cessed.

__LINE__ Always To indicate this source line number.

continued. . .

142

C Language Features Preprocessing

__DATE___ Always To indicate the current date, e.g. May 21
2004
_ TIME_ Always To indicate the current time, e.g.
08:06:31.
_PLIB When the peripheral To indicate that the microchip compatible
libraries are linked in peripheral libraries have been linked in.

3.11.4 Pragma Directives

There are certain compile-time directives that can be used to modify the behaviour of the compiler.
These are implemented through the use of the ANSI standard #pragma facility. The format of a
pragma is:

#tpragma keyword options

where keyword is one of a set of keywords, some of which are followed by certain options.
A list of the keywords is given in Table 3.9. Those keywords not discussed elsewhere are detailed
below.

3.11.4.1 The #pragma printf_check Directive

Certain library functions accept a format string followed by a variable number of arguments in the
manner of printf (). Although the format string is interpreted at runtime, it can be compile-time
checked for consistency with the remaining arguments.

This directive enables this checking for the named function, e.g. the system header file <stdio.h>
includes the directive #pragma printf_check (printf) const toenable this checking for printf ().
You may also use this for any user-defined function that accepts print f-style format strings. The
qualifier following the function name is to allow automatic conversion of pointers in variable argu-
ment lists. The above example would cast any pointers to strings in RAM to be pointers of the type
(const char *)

Note that the warning level must be set to -1 or below for this option to have any visible
effect. See Section 2.6.64.

143

Preprocessing C Language Features
Table 3.7: Preprocessor directives
Directive Meaning Example
preprocessor null directive, do
nothing
#assert generate error if condition false #assert SIZE > 10
#asm signifies the beginning of in-line #asm
assembly mov r0, rlh
#endasm
#define define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))
#elif short for #else #if see #ifdef
telse conditionally include source lines see #if
#endasm | terminate in-line assembly see #asm
#endif terminate conditional source see #if
inclusion
#error generate an error message #error Size too big
#if include source lines if constant #if SIZE < 10
expression true c = process (10)
telse
skip () ;
tendif
#ifdef include source lines if preprocessor | #ifdef FLAG
symbol defined do_loop();
#elif SIZE ==
skip_loop();
#endif
#ifndef | include source lines if preprocessor | #ifndef FLAG
symbol not defined Jump () ;
#endif
#include | include text file into source #include <stdio.h>
#include "project.h"
#line specify line number and filename #line 3 final
for listing
#nn (where nn is a number) short for #20
#line nn
#pragma compiler specific options 3.11.4
#undef undefines preprocessor symbol #undef FLAG
#warning | generate a warning message #warning Length not set

144

C Language Features Preprocessing

Table 3.9: Pragma directives

Directive Meaning Example

printf_check Enable printf-style format string | #pragma
checking printf_check (printf) const

regsused Specify registers which are used by | #pragma regsused _func r4
a function

switch Specify code generation for switch | #pragma switch direct
statements

inline Specify function is inline #pragma inline (_delay)

interrupt_level | disable function at the specified | #pragma interrupt_level 1
level

warning Control messaging parameters #pragma warning disable

299,407

3.11.4.2 The #pragma regsused Directive

The #pragma regsused directive allows the programmer to indicate register usage for functions
that will not be “seen” by the code generator, for example if they were written in assembly code. It
has no effect when used with functions defined in C code, but in these cases the register usage of
these functions can be accurately determined by the compiler and the pragma is not required.

The compiler will determine only those registers and objects which need to be saved for an
interrupt function defined and use of this pragma allows the code generator to also determine register
usage for routines written in assembly code.

The general form of the pragma is:

#pragma regsused routineName registerList

where routineName is the C equivalent name of the function or routine whose register usage is
being defined, and registerList is a space-separated list of registers names, as shown in Table
3.10. The pragma must be placed after the declaration for the assembly routine whose register usage
is being specified.

Those registers not listed are assumed to be unused by the function or routine. The code generator
may use any of these registers to hold values across a function call. Hence, if the routine does in fact
use these registers, unreliable program execution may eventuate.

The register names are not case sensitive and a warning will be produced if the register name is
not recognized. A blank list indicates that the specified function or routine uses no registers.

145

Preprocessing

C Language Features

Table 3.10: Valid register names

Register Name Description
wreg W register
status STATUS register
pclat PCLATH register

prodl, prodh

product result registers

fsr0, fsrl, fsr2

indirect data pointers O, 1 and 2

tblptrl, thlptrh, tblptru

table pointer registers

Table 3.11: Switch types

switch type
speed

description
Use the faster switch method

space

Use the smallest code size method

time

Use a fixed delay switch method

auto

use smallest code size method (default)

For example, a routine called _search is written in assembly code. In the C source, we may

write:

extern void search(void);
#pragma regsused search wreg status fsr0

to indicate that this routine used the W register, STATUS and FSRO.

3.11.4.3 The #pragma switch Directive

Normally, the compiler chooses how switch statements will be encoded to produce the smallest pos-
sible code size. The #pragma switch directive can be used to force the compiler to use a different

coding strategy.

The general form of the switch pragma is:

#pragma switch switch_type

where switch_type is one of the available switch methods listed in Table 3.11.
Specifying the time option to the #pragma switch directive forces the compiler to generate
the table look-up style switch method. This is mostly useful where timing is an issue for switch

statements (i.e.: state machines).

This pragma affects all subsequent code. The auto option may be used to revert to the default

behaviour.

146

C Language Features Preprocessing

3.11.4.4 The #pragma inline Directive

The #pragma inline directive is used to indicate to the compiler that a function will be inlined.
The directive is only usable with special functions that the code generator will handle specially, e.g
the _delay function.

This pragma should not be used with user-defined functions; the code generator must
be aware of how to generator code for those functions specified as inline.

3.11.4.5 The #pragma interrupt_level Directive

The #pragma interrupt_level directive can be used to disable function duplication if it is called
from both interrupt and main-line code. See 3.9.4.1 for ore information and examples of its opera-
tion.

3.11.4.6 The #pragma warning Directive

The warning disable pragma Some warning messages can be disabled by using the warning
disable pragma. This pragma will only affect warnings that are produced by either parser or the
code generator, i.e. errors directly associated with C code. The position of the pragma is only
significant for the parser, i.e. a parser warning number may be disabled, then re-enabled around
a section of the code to target specific instances of the warning. Specific instances of a warning
produced by the code generator cannot be individually controlled. The pragma will remain in force
during compilation of the entire module.

The state of those warnings which have been disabled can preserved and recalled using the
warning push and warning pop pragmas. Pushes and pops can be nested to allow a large degree
of control over the message behaviour.

TUTORIAL

DISABLING A WARNING The following example shows the warning associated with
qualifying an auto object being disabled, number 348.

void main(void)

{

#pragma warning disable 348

near int c;

#pragma warning enable 348

147

Preprocessing C Language Features

/* etc */

}

int rv(int a)

{

near int c;

/* etc */

}

which will issue only one warning associated with the second definition of the auto
variable c. Warning number 348 is disabled during parsing of the definition of the auto
variable, c, inside the function main.

altst.c: 35: (348) auto variable "c" should not be qualified (warning)
This same affect would be observed using the following code.

void main(void)

{

#pragma warning push

#pragma warning disable 348

near int c;

#pragma warning pop

/* etc */

}

int rv(int a)

{

near int c;

/* etc */

}

Here the state of the messaging system is saved by the warning push pragma. Warning
348 is disabled, then after the source code which triggers the warning, the state of the
messaging system is retrieved by the use of the warning pop pragma.

The warning error/warning pragma It is also possible to change the type of some messages.
This is only possible by the use of the warning pragma and only affects messages generated by the
parser or code generator. The position of the pragma is only significant for the parser, i.e. a parser
message number may have its type changed, then reverted back around a section of the code to target
specific instances of the message. Specific instances of a message produced by the code generator
cannot be individually controlled. The pragma will remain in force during compilation of the entire
module.

148

C Language Features Linking Programs

TUTeRIAL

The following shows the warning produced in the previous example being converted to
an error for the instance in the function main ().

void main(void)

{

#pragma warning error 348
near int c;

#pragma warning warning 348
/* etc */

}

int rv(int a)

{

near int c;

/* etc */

}

Compilation of this code would result in an error, and as with any error, this will force

compilation to cease after the current module has concluded, or the maximum error
count has been reached.

3.12 Linking Programs

The compiler will automatically invoke the linker unless requested to stop after producing assembly
code (PICC18 -S option) or object code (PICC18 -C option).

HI-TECH C, by default, generates Intel HEX. Use the ——OUTPUT= option to specify a different
output format.

After linking, the compiler will automatically generate a memory usage map which shows the
address used by, and the total sizes of, all the psects which are used by the compiled code.

The program statistics shown after the summary provides more concise information based on
each memory area of the device. This can be used as a guide to the available space left in the device.

More detailed memory usage information, listed in ascending order of individual psects, may
be obtained by using the PICC18 --SUMMARY=psect option. Generate a map file for the complete
memory specification of the program.

149

Linking Programs C Language Features

3.12.1 Replacing Library Modules

Although HI-TECH C comes with a librarian (LIBR) which allows you to unpack a library files and
replace modules with your own modified versions, you can easily replace a library module that is
linked into your program without having to do this. If you add the source file which contains the
library routine you wish to replace on the command-line list of source files then the routine will
replace the routine in the library file with the same name.

This method works due to the way the linker scans source and library file. When trying
to resolve a symbol (in this instance a function name) the linker first scans all source
modules for the definition. Only if it cannot resolve the symbol in these files does it
then search the library files. Even though the symbol may be defined in a source file
and a library file, the linker will not search the libraries and no multiply defined symbol
error will result. This is not true if a symbol is defined twice in source files.

For example, if you wished to make changes to the library function max () which resides in the file
max . c in the SOURCES directory, you could make a copy of this source file, make the appropriate
changes and then compile and use it as follows.

PICC18 --chip=18F242 main.c init.c max.c

The code for max () in max.c will be linked into the program rather than the max () function con-
tained in the standard libraries. Note, that if you replace an assembler module, you may need the
-P option to preprocess assembler files as the library assembler files often contain C preprocessor
directives.

3.12.2 Signature Checking

The compiler automatically produces signatures for all functions. A signature is a 16-bit value
computed from a combination of the function’s return data type, the number of its parameters and
other information affecting the calling sequence for the function. This signature is output in the
object code of any function referencing or defining the function.

At link time the linker will report any mismatch of signatures. HI-TECH C Compiler for PIC18
MCUs is only likely to issue a mismatch error from the linker when the routine is either a pre-
compiled object file or an assembly routine. Other function mismatches are reported by the code
generator.

150

C Language Features Linking Programs

TUTeRIAL

It is sometimes necessary to write assembly language routines which are called from C
using an extern declaration. Such assembly language functions should include a signa-
ture which is compatible with the C prototype used to call them. The simplest method of
determining the correct signature for a function is to write a dummy C function with the
same prototype and compile it to assembly language using the PICC18 -S option. For
example, suppose you have an assembly language routine called _widget which takes
two int arguments and returns a char value. The prototype used to call this function
from C would be:

extern char widget (int, int);

Where a call to _widget is made in the C code, the signature for a function with two int
arguments and a char return value would be generated. In order to match the correct
signature the source code for widget needs to contain an assembler SIGNAT pseudo-op
which defines the same signature value. To determine the correct value, you would write
the following code:

char widget (int argl, int arg2)
{
}

and compile it to assembly code using

PICC18 -S x.c

The resultant assembly code includes the following line:
SIGNAT _widget, 8249

The SIGNAT pseudo-op tells the assembler to include a record in the .obj file which
associates the value 8249 with symbol _widget. The value 8249 is the correct signature
for a function with two int arguments and a char return value. If this line is copied into
the .as file where _widget is defined, it will associate the correct signature with the
function and the linker will be able to check for correct argument passing. For example,
if another . c file contains the declaration:

extern char widget (long);

then a different signature will be generated and the linker will report a signature mis-
match which will alert you to the possible existence of incompatible calling conventions.

151

Standard I/O Functions and Serial I/O C Language Features

Table 3.12: Supported standard I/O functions

Function name Purpose
printf (const char * s, ...) Formatted printing to stdout
sprintf (char * buf, const char * s, ...) | Writes formatted text to buf

3.12.3 Linker-Defined Symbols

The link address of a psect can be obtained from the value of a global symbol with name __Lname
where name is the name of the psect. For example, __Lbss is the low bound of the bss psect. The
highest address of a psect (i.e. the link address plus the size) is symbol __Hname.

If the psect has different load and link addresses the load start address is specified as __Bname.

3.13 Standard I/0 Functions and Serial I/0

A number of the standard I/O functions are provided, specifically those functions intended to read
and write formatted text on standard output and input. A list of the available functions is in Table
3.12. More details of these functions can be found in Appendix A.

Before any characters can be written or read using these functions, the putch () (for printf ())
and getch () (for scanf ()) functions must be written to define stdin and stdout, respectively.
Other routines which may be required include getche () and kbhit ().

You will find samples of serial code which implements the putch () and getch () functions in
the file serial.c in the SAMPLES directory.

152

Chapter 4

Macro Assembler

The Macro Assembler included with HI-TECH C Compiler for PIC18 MCUs assembles source files
for PIC18 MCUs. This chapter describes the usage of the assembler and the directives (assembler
pseudo-ops and controls) accepted by the assembler in the source files.

The HI-TECH C Macro Assembler package includes a linker, librarian, cross reference generator
and an object code converter.

Athough the term “assembler” is almost universally used to decribe the tool which con-
verts human-readable mnemonics into machine code, both “assembler” and “assembly”
are used to describe the source code which such a tool reads. The latter is more com-
mon and is used in this manual to describe the language. Thus you will see the terms
assembly language (or just assembly), assembly listing and etc, but assembler options,
assembler directive and assembler optimizer.

4.1 Assembler Usage

The assembler is called ASPIC18 and is available to run on Windows, Linux and Mac OS systems.
Note that the assembler will not produce any messages unless there are errors or warnings — there
are no “assembly completed” messages.

Typically the command-line driver, PICC18, is used to envoke the assembler as it can be passed
assembler source files as input, however the options for the assembler are supplied here for instances

153

Assembler Options Macro Assembler

where the assembler is being called directly, or when they are specified using the command-line
driver option —-SETOPTION, see Section 2.6.58.

The usage of the assembler is similar under all of available operating systems. All command-line
options are recognised in either upper or lower case. The basic command format is shown:

ASPIC18 [options] files

files is a space-separated list of one or more assembler source files. Where more than one source
file is specified the assembler treats them as a single module, i.e. a single assembly will be performed
on the concatenation of all the source files specified. The files must be specified in full, no default
extensions or suffixes are assumed.

options is an optional space-separated list of assembler options, each with a minus sign - as
the first character. A full list of possible options is given in Table 4.1, and a full description of each
option follows.

Table 4.1: ASPIC18 command-line options

Option Meaning Default
-A Produce assembler output Produce object code
-C Produce cross-reference file No cross reference
-Cchipinfo Define the chipinfo file dat\picc-18.1ini
-E[fileldigit] | Seterror destination/format
-Flength Specify listing form length 66
-H Output hex values for constants | Decimal values
-I List macro expansions Don’t list macros
-L[listfile] Produce listing No listing
-0 Perform optimization No optimization
-Ooutfile Specify object name srcfile.ob]
-Pprocessor Define the processor
-R Specify non-standard ROM
-Twidth Specify listing page width 80
-V Produce line number info No line numbers
-Wlevel Set warning level threshold 0
-X No local symbols in OBJ file

4.2 Assembler Options

The command-line options recognised by ASPIC18 are as follows.

154

Macro Assembler Assembler Options

-A An assembler file with an extension .opt will be produced if this option is used. This is useful
when checking the optimized assembly produced using the -0 assembler option. Thus if both
-A and -0 are used with an assembly source file, the file will be optimized and rewritten, with-
out the usual conversion to an object file.
The output file, when this option is used, is a valid assembly file that can be passed to the as-
sembler. This differs to the assembly list file produced by the assembler when the -L assembler
option is used.

-C A cross reference file will be produced when this option is used. This file, called srcfile.crf,
where srcfile is the base portion of the first source file name, will contain raw cross refer-
ence information. The cross reference utility CREF must then be run to produce the formatted
cross reference listing. See Section 4.7 for more information.

-Cchipinfo Specify the chipinfo file to use. The chipinfo file is called picc-18.ini and can be
found in the DAT directory of the compiler distribution.

-Elfileldigit] The default format for an error message is in the form:

filename: line: message

where the error of type message occurred on line 1ine of the file filename.
The -E option with no argument will make the assembler use an alternate format for
error and warning messages. Use of the option in this form has a similar effect as the
same option used with command-line driver. See Section 2.5 for more information.
Specifying a digit as argument has a similar effect, only it allows selection of pre-set
message formats.

Specifying a filename as argument will force the assembler to direct error and warning
messages to a file with the name specified.

-Flength By default when an assembly list file is requested (see assembler option -L), the listing
format is pageless, i.e. the assembly listing output is continuous. The output may be formatted
into pages of varying lengths. Each page will begin with a header and title, if specified. The
-F option allows a page length to be specified. A zero value of Iength implies pageless
output. The length is specified in a number of lines.

-H Particularly useful in conjunction with the -A or ~L ASPIC18 options, this option specifies that
output constants should be shown as hexadecimal values rather than decimal values.

-I This option forces listing of macro expansions and unassembled conditionals which would other-
wise be suppressed by a NOLIST assembler control. The -L option is still necessary to produce
a listing.

155

Assembler Options Macro Assembler

-Llistfile This option requests the generation of an assembly listing file. If 1ist file is specified
then the listing will be written to that file, otherwise it will be written to the standard output.
An assembly listing file contains additional fields, such as the address and opcode fields, which
are not part of the assembly source syntax, hence these files cannot be passed to the assembler
for compilation. See the assembler -A option for generating processed assembly source files
that can be used as source files in subsequent compilation.

-O This requests the assembler to perform optimization on the assembly code. Note that the use of
this option slows the assembly process down, as the assembler must make an additional pass
over the input code. Debug information for assembler code generated from C source code
may become unreliable.

-Ooutfile By default the assembler determines the name of the object file to be created by stripping
any suffix or extension (i.e. the portion after the last dot) from the first source filename and
appending .obj. The -0 option allows the user to override the default filename and specify a
new name for the object file.

-Pprocessor This option defines the processor which is being used. The processor type can also be
indicated by use of the PROCESSOR directive in the assembler source file, see Section 4.3.10.20.
You can also add your own processors to the compiler via the compiler’s chipinfo file.

-Twidth This option allows specification of the assembly list file width, in characters. width
should be a decimal number greater than 41. The default width is 80 characters.

-V This option will include line number and filename information in the object file produced by
the assembler. Such information may be used by debuggers. Note that the line numbers will
correspond with assembler code lines in the assembler file. This option should not be used
when assembling an assembler file produced by the code generator from a C source file, i.e. it
should only be used with hand-written assembler source files.

-W[!Iwarnlevel This option allow the warning threshold level to be set. This will limit the number
of warning messages produce when the assembler is executing. The effect of this option is
similar to the command-line driver’s -——WARN option, see Section 2.6.64. See Section 2.5 for
more information.

-X The object file created by the assembler contains symbol information, including local symbols,
i.e. symbols that are neither public or external. The -X assembler option will prevent the local
symbols from being included in the object file, thereby reducing the file size.

156

Macro Assembler HI-TECH C Assembly Language

4.3 HI-TECH C Assembly Language

The source language accepted by the macro assembler, ASPIC18, is described below. All opcode
mnemonics and operand syntax are strictly PIC18 assembly language. Additional mnemonics and
assembler directives are documented in this section.

4.3.1 Assembler Format Deviations

The HI-TECH PICC-18 assembler uses a slightly modified form of assembly language to that used
in C18 and MPASM.

The HI-TECH PICC-18 assembler uses the operands ““, w” and ““, £~ to specify the destination
register. The W register is selected as the destination when using the “, w” operand, and the file
register is selected when using the *, £ operand or if no destination operand is specified. The case
of the letter in the destination operand in not important. The operands ““, 0” or *, 1”” cannot be used
to specify the destination.

The PICC-18 assembler also uses the operands “,b” and “, c” to indicate that a file register is
banked or common. A common register is one that resides in the access bank. Instructions using this
operand will have the RAM access bit in the instruction cleared by the assembler. A banked register
does not reside in the access bank. Instructions using this operand will have the RAM access bit in
the instruction set by the assembler. The BSR register must be correctly loaded prior to executing a
banked instruction to select the appropriate bank. Identifiers that do not use either of these operands
are assumed to be banked. A symbol can also be preceded by the characters “c:” to indicate that it
resides in common memory.

An access bank indicator, such as “,c” or “c:” is not required when an address used in an
instruction is absolute and the value of the address is within the access bank. The assembler will
determine from the address that this is the case. However, these indicators must be used with all
unresolved identifiers. For example, the following instructions show the WREG first being moved
to an absolute location and then to an address represented by an identifier. The op codes for these
instructions, assuming that the address assigned to _foo is 0516h, are shown.

il

6EES movwf OFESh
6E16 movwf _foo,c
6F16 movwf _foo,b
6F16 movwf _foo

Notice that first two instruction have the RAM access bit (bit 8 of the op-code) cleared, but that it is
set in the last two instructions.

The retfie instruction may be followed by “f” (no comma) to indicate that the shadow registers
should be retrieved and copied to their corresponding registers on execution.

157

HI-TECH C Assembly Language Macro Assembler

The compiler also supports the use of the PIC10/12/16 compiler pseudo instructions LIJMP and
FCALL. These map to a regular GOTO and CALL PIC18 instruction, respectively. This support allows
for easier porting of assembly code from PIC10/12/16 devices to the PIC18 architecture. Avoid
using these pseudo instructions in projects developed for PIC18 devices.

4.3.2 Pre-defined Macros

The file sfr.h, contained in the SOURCES directory contains useful definitions for assembler pro-
gramming. In particular it contains an assembler macro called loadfsr, which can be used when
you require any of the FSR registers to be loaded. The two arguments to this macro are the FSR
register number and the value to be loaded. For example:

loadfsr 2,1FFh

which will load FSR2 with the value 1FFh. This macro should be used in preference to the 1fsr
instruction.

The BANKMASK macro can also be used to mask an address for using in a file register instruc-
tion. On all PIC18 devices, it performs a bitwise AND operation with the value OxFF. Do not use
this macro with operands that should represent a full banked address, for example with the MOVFF
instruction.

4.3.3 Statement Formats

Legal statement formats are shown in Table 4.2.

The label field is optional and, if present, should contain one identifier. A label may appear
on a line of its own, or precede a mnemonic as shown in the second format.

The third format is only legal with certain assembler directives, such as MACRO, SET and EQU. The
name field is mandatory and should also contain one identifier.

If the assembly file is first processed by the C preprocessor, see Section 2.6.12, then it may also
contain lines that form valid preprocessor directives. See Section 3.11.2 for more information on the
format for these directives.

There is no limitation on what column or part of the line in which any part of the statement
should appear.

4.3.4 Characters

The character set used is standard 7 bit ASCII. Alphabetic case is significant for identifiers, but not
mnemonics and reserved words. Tabs are treated as equivalent to spaces.

158

Macro Assembler HI-TECH C Assembly Language

Table 4.2: ASPIC18 statement formats
Format 1 | label:

Format 2 | label: mnemonic | operands | ; comment
Format 3 | name pseudo-op | operands | ; comment
Format 4 | ; comment only
Format 5 | <empty line>

4.3.4.1 Delimiters

All numbers and identifiers must be delimited by white space, non-alphanumeric characters or the
end of a line.

4.3.4.2 Special Characters

There are a few characters that are special in certain contexts. Within a macro body, the character & is
used for token concatenation. To use the bitwise & operator within a macro body, escape it by using
&& instead. In a macro argument list, the angle brackets < and > are used to quote macro arguments.

4.3.5 Comments

An assembly comment is initiated with a semicolon that is not part of a string or character constant.
If the assembly file is first processed by the C preprocessor, see Section 2.6.12, then it may also
contain C or C++ style comments using the standard /* ... */and // syntax.

4.3.5.1 Special Comment Strings

Several comment strings are appended to assembler instructions by the code generator. These are
typically used by the assembler optimizer.

The comment string ; volatile is used to indicate that the memory location being accessed in
the commented instruction is associated with a variable that was declared as volatile in the C
source code. Accesses to this location which appear to be redundant will not be removed by the
assembler optimizer if this string is present.

This comment string may also be used in assembler source to achieve the same effect for loca-
tions defined and accessed in assembly code.

The comment string ; wreg free is placed on some CALL instructions. The string indicates that
the WREG was not loaded with a function parameter, i.e. it is not in use. If this string is present,
optimizations may be made to assembler instructions before the function call which load the WREG
redundantly.

159

HI-TECH C Assembly Language Macro Assembler

Table 4.3: ASPIC18 numbers and bases

Radix Format
Binary digits 0 and 1 followed by B
Octal digits O to 7 followed by O, Q, o or g
Decimal digits O to 9 followed by D, d or nothing
Hexadecimal | digits 0 to 9, A to F preceded by Ox or followed by H or h

4.3.6 Constants
4.3.6.1 Numeric Constants

The assembler performs all arithmetic with signed 32-bit precision.

The default radix for all numbers is 10. Other radices may be specified by a trailing base specifier
as given in Table 4.3.

Hexadecimal numbers must have a leading digit (e.g. Offffh) to differentiate them from identi-
fiers. Hexadecimal digits are accepted in either upper or lower case.

Note that a binary constant must have an upper case B following it, as a lower case b is used for
temporary (numeric) label backward references.

In expressions, real numbers are accepted in the usual format, and are interpreted as IEEE 32-bit
format.

4.3.6.2 Character Constants and Strings

A character constant is a single character enclosed in single quotes ' .

Multi-character constants, or strings, are a sequence of characters, not including carriage return
or newline characters, enclosed within matching quotes. Either single quotes ' or double quotes "
maybe used, but the opening and closing quotes must be the same.

4.3.7 Identifiers

Assembly identifiers are user-defined symbols representing memory locations or numbers. A sym-
bol may contain any number of characters drawn from the alphabetics, numerics and the special
characters dollar, $, question mark, ? and underscore, _.

The first character of an identifier may not be numeric. The case of alphabetics is significant,
e.g. Fred is not the same symbol as fred. Some examples of identifiers are shown here:

An_identifier

an_identifier
an_identifierl

160

Macro Assembler HI-TECH C Assembly Language

$
?$_12345

4.3.7.1 Significance of Identifiers

Users of other assemblers that attempt to implement forms of data typing for identifiers should note
that this assembler attaches no significance to any symbol, and places no restrictions or expectations
on the usage of a symbol.

The names of psects (program sections) and ordinary symbols occupy separate, overlapping
name spaces, but other than this, the assembler does not care whether a symbol is used to represent
bytes, words or sports cars. No special syntax is needed or provided to define the addresses of bits
or any other data type, nor will the assembler issue any warnings if a symbol is used in more than
one context. The instruction and addressing mode syntax provide all the information necessary for
the assembler to generate correct code.

4.3.7.2 Assembler-Generated Identifiers

Where a LOCAL directive is used in a macro block, the assembler will generate a unique symbol to
replace each specified identifier in each expansion of that macro. These unique symbols will have
the form ??nnnn where nnnn is a 4 digit number. The user should avoid defining symbols with the
same form.

4.3.7.3 Location Counter

The current location within the active program section is accessible via the symbol $. This symbol
expands to the address of the currently executing instruction. Thus:

goto $
will represent code that will jump to itself and form an endless loop. By using this symbol and an
offset, a relative jump destination to be specified.
The address represented by $ is a word address and thus any offset to this symbol represents a
number of instructions. For example:
goto $+1
movlw 8

movwf _foo

will skip one instruction.

161

HI-TECH C Assembly Language Macro Assembler

4.3.7.4 Register Symbols

Code in assembly modules may gain access to the special function registers by including pre-defined
assembly header files. The appropriate file can be included by add the line:

#include <picl8.inc>

to the assembler source file. (Assembly header files use the . inc extension.) Note that the file must
be included using a C pre-processor directive and hence the option to pre-process assembly files must
be enabled when compiling, see Section 2.6.12. This header file contains appropriate commands to
ensure that the header file specific for the target device is included into the source file.

These header files contain EQU declarations for all byte or multi-byte sized registers and #define
macros for named bits within byte registers.

4.3.7.5 Symbolic Labels

A label is symbolic alias which is assigned a value equal to its offset within the current psect.

A label definition consists of any valid assembly identifier followed by a colon, :. The defini-
tion may appear on a line by itself or be positioned before a statement. Here are two examples of
legitimate labels interspersed with assembly code.

frank:
movlw 1
goto fin
simon4d: clrf _input

Here, the label frank will ultimately be assigned the address of the mov instruction, and simon44 the
address of the c1rf instruction. Regardless of how they are defined, the assembler list file produced
by the assembler will always show labels on a line by themselves.

Labels may be used (and are preferred) in assembly code rather than using an absolute address.
Thus they can be used as the target location for jump-type instructions or to load an address into a
register.

Like variables, labels have scope. By default, they may be used anywhere in the module in which
they are defined. They may be used by code above their definition. To make a label accessible in
other modules, use the GLOBAL directive. See Section 4.3.10.1 for more information.

4.3.8 Expressions

The operands to instructions and directives are comprised of expressions. Expressions can be made
up of numbers, identifiers, strings and operators.

162

Macro Assembler HI-TECH C Assembly Language

Table 4.4: ASPIC18 operators

Operator Purpose Example

* Multiplication movlw 4*33

+ Addition bra $+1

- Subtraction DB 5-2

/ Division movlw 100/4

=0r eq Equality IF inp eq 66
>orgt Signed greater than IF inp > 40
>=or ge Signed greater than or equal to | IF inp ge 66
<orlt Signed less than IF inp < 40
<=orle Signed less than or equal to IF inp le 66
<>orne Signed not equal to IF inp <> 40
low Low byte of operand movlw low (inp)
high High byte of operand movlw high(1008h)
highword | High 16 bits of operand DW highword (inp)
mod Modulus movlw 77 mod 4
& Bitwise AND clrf inp&0ffh

8 Bitwise XOR (exclusive or) movlw inp”80

\ Bitwise OR movlw inp|l

not Bitwise complement movlw not 055h
<<orshl | Shiftleft DB inp>>8

>>or shr | Shift right movlw inp shr 2
rol Rotate left DB inp rol 1
ror Rotate right DB inp ror 1
float24 24-bit version of real operand DW float24(3.3)
nul Tests if macro argument is null

163

HI-TECH C Assembly Language Macro Assembler

Operators can be unary (one operand, e.g. not) or binary (two operands, e.g. +). The operators
allowable in expressions are listed in Table 4.4. The usual rules governing the syntax of expressions
apply.

The operators listed may all be freely combined in both constant and relocatable expressions. The
HI-TECH linker permits relocation of complex expressions, so the results of expressions involving
relocatable identifiers may not be resolved until link time.

4.3.9 Program Sections

Program sections, or psects, are simply a section of code or data. They are a way of grouping together
parts of a program (via the psect’s name) even though the source code may not be physically adjacent
in the source file, or even where spread over several source files.

The concept of a program section is not a HI-TECH-only feature. Often referred to as
blocks or segments in other compilers, these grouping of code and data have long used
the names text, bss and data.

A psect is identified by a name and has several attributes. The PSECT assembler directive is used
to define a psect. It takes as arguments a name and an optional comma-separated list of flags. See
Section 4.3.10.3 for full information on psect definitions. Chapter 5 has more information on the
operation of the linker and on options that can be used to control psect placement in memory.

The assembler associates no significance to the name of a psect and the linker is also not aware
of which are compiler-generated or user-defined psects. Unless defined as abs (absolute), psects are
relocatable.

The following is an example showing some executable instructions being placed in the text
psect, and some data being placed in the rbss psect.

PSECT text,class=CODE
adjust:

goto clear_fred
increment:

incf _fred
PSECT bss, class=BANKO, space=1
fred:

DS 2
PSECT text,class=CODE
clear_fred:

164

Macro Assembler HI-TECH C Assembly Language

clrf _fred
return

Note that even though the two blocks of code in the text psect are separated by a block in the bss
psect, the two text psect blocks will be contiguous when loaded by the linker. In other words,
the incf _fred instruction will be followed by the c1rf instruction in the final output. The actual
location in memory of the text and bss psects will be determined by the linker.

Code or data that is not explicitly placed into a psect will become part of the default (unnamed)
psect.

4.3.10 Assembler Directives

Assembler directives, or pseudo-ops, are used in a similar way to instruction mnemonics, but either
do not generate code, or generate non-executable code, i.e. data bytes. The directives are listed in
Table 4.5, and are detailed below.

4.3.10.1 GLOBAL

GLOBAL declares a list of symbols which, if defined within the current module, are made public. If
the symbols are not defined in the current module, it is a reference to symbols in external modules.
Example:

GLOBAL labl,lab2z,lab3

4.3.10.2 END

END is optional, but if present should be at the very end of the code defined in the module. It will
terminate the assembly process, and not even blank lines should follow this directive.

If an expression is supplied as an argument, that expression will be used to define the entry point
(address) of the program. Whether this is of any use will depend on the type of output debug file
being generated and the target platform. It is typically most useful for hosted systems, where an
application program may not be located at the reset vector.

For example, if start_label is defined at the reset vector:

END start_label

165

HI-TECH C Assembly Language Macro Assembler

Table 4.5: ASPIC18 assembler directives

Directive Purpose

GLOBAL Make symbols accessible to other modules or allow reference to
other modules’ symbols

END End assembly

PSECT Declare or resume program section

ORG Set location counter

EQU Define symbol value

SET Define or re-define symbol value

DB Define constant byte(s)

DW Define constant word(s)

DS Reserve storage

DABS Define absolute storage

IF Conditional assembly

ELSIF Alternate conditional assembly

ELSE Alternate conditional assembly

ENDIF End conditional assembly

FNCALL Inform the linker that one function calls another

FNROOT Inform the linker that a function is the “root” of a call graph

MACRO Macro definition

ENDM End macro definition

BANKSEL Selection bank of specified address

LOCAL Define local tabs

ALIGN Align output to the specified boundary

PAGESEL Generate set/reset instruction to set PCLATH for this page

PROCESSOR | Define the particular chip for which this file is to be assembled.

REPT Repeat a block of code n times

IRP Repeat a block of code with a list

IRPC Repeat a block of code with a character list

SIGNAT Define function signature

166

Macro Assembler HI-TECH C Assembly Language

Table 4.6: PSECT flags

Flag Meaning
abs Psect is absolute
bit Psect holds bit objects
class=name Specify class name for psect
delta=size Size of an addressing unit
global Psect is global (default)
limit=address Upper address limit of psect
local Psect is not global
ovrld Psect will overlap same psect in other modules
pure Psect is to be read-only
reloc=boundary | Start psect on specified boundary
size=max Maximum size of psect
space=area Represents area in which psect will reside
with=psect Place psect in the same page as specified psect

4.3.10.3 PSECT

The PSECT directive declares or resumes a program section. It takes as arguments a name and,
optionally, a comma-separated list of flags. The allowed flags are listed in Table 4.6, below.

Once a psect has been declared it may be resumed later by another PSECT directive, however the
flags need not be repeated.

e abs defines the current psect as being absolute, i.e. it is to start at location 0. This does
not mean that this module’s contribution to the psect will start at 0, since other modules may
contribute to the same psect.

e The bit flag specifies that a psect hold objects that are 1 bit long. Such psects have a scale
value of 8 to indicate that there are 8 addressable units to each byte of storage.

e The class flag specifies a class name for this psect. Class names are used to allow local psects
to be referred to by a class name at link time, since they cannot be referred to by their own
name. Class names are also useful where psects need only be positioned anywhere within a
range of addresses rather than at one specific address.

e The delta flag defines the size of an addressing unit. In other words, the number of bytes
covered for an increment in the address.

167

HI-TECH C Assembly Language Macro Assembler

e A psect defined as global will be combined with other global psects of the same name from

other modules at link time. This is the default behaviour for psects, unless the local flag is
used.

The 1imit flag specifies a limit on the highest address to which a psect may extend.

A psect defined as local will not be combined with other local psects at link time, even if
there are others with the same name. Where there are two local psects in the one module,
they reference the same psect. A local psect may not have the same name as any global
psect, even one in another module.

A psect defined as ovrld will have the contribution from each module overlaid, rather than
concatenated at runtime. ovrld in combination with abs defines a truly absolute psect, i.e. a
psect within which any symbols defined are absolute.

The pure flag instructs the linker that this psect will not be modified at runtime and may
therefore, for example, be placed in ROM. This flag is of limited usefulness since it depends
on the linker and target system enforcing it.

The reloc flag allows specification of a requirement for alignment of the psect on a particular
boundary, e.g. reloc=100h would specify that this psect must start on an address that is a
multiple of 100h.

The size flag allows a maximum size to be specified for the psect, e.g. size=100h. This will
be checked by the linker after psects have been combined from all modules.

The space flag is used to differentiate areas of memory which have overlapping addresses,
but which are distinct. Psects which are positioned in program memory and data memory may
have a different space value to indicate that the program space address zero, for example,
is a different location to the data memory address zero. Devices which use banked RAM
data memory typically have the same space value as their full addresses (including bank
information) are unique.

The with flag allows a psect to be placed in the same page with a specified psect. For example
with=text will specify that this psect should be placed in the same page as the text psect.

Some examples of the use of the PSECT directive follow:

168

PSECT fred
PSECT bill,size=100h,global
PSECT joh, abs,ovrld,class=CODE, delta=2

Macro Assembler HI-TECH C Assembly Language

43.104 ORG

The ORG directive changes the value of the location counter within the current psect. This means that
the addresses set with ORG are relative to the base address of the psect, which is not determined
until link time.

The much-abused ORG directive does not necessarily move the location counter to the
absolute address you specify as the operand. This directive is rarely needed in programs.

The argument to ORG must be either an absolute value, or a value referencing the current psect. In
either case the current location counter is set to the value determined by the argument. It is not
possible to move the location counter backward. For example:

ORG 100h
will move the location counter to the beginning of the current psect plus 100h. The actual location
will not be known until link time.

In order to use the ORG directive to set the location counter to an absolute value, the directive
must be used from within an absolute, overlaid psect. For example:

PSECT absdata, abs,ovrld
ORG 50h

4.3.10.5 EQU
This pseudo-op defines a symbol and equates its value to an expression. For example
thomas EQU 123h

The identifier thomas will be given the value 123h. EQU is legal only when the symbol has not
previously been defined. See also Section 4.3.10.6.

4.3.10.6 SET

This pseudo-op is equivalent to EQU except that allows a symbol to be re-defined. For example

thomas SET Oh

169

HI-TECH C Assembly Language Macro Assembler

4.3.10.7 DB

DB is used to initialize storage as bytes. The argument is a list of expressions, each of which will be
assembled into one byte. Each character of the string will be assembled into one memory location.
Examples:

alabel: DB 'X’',1,2,3,4,

Note that because the size of an address unit in ROM is 2 bytes, the DB pseudo-op will initialise a
word with the upper byte set to zero.

4.3.10.8 DW
DW operates in a similar fashion to DB, except that it assembles expressions into words. Example:

DW -1, 3664h, ‘A’, 3777Q

4.3.109 DS

This directive reserves, but does not initialize, memory locations. The single argument is the number
of bytes to be reserved. Examples:

alabel: DS 23 ;Reserve 23 bytes of memory
xlabel: DS 243 ;Reserve 5 bytes of memory

4.3.10.10 DABS

This directive allows one or more bytes of memory to be reserved at the specified address. The
general form of the directive is:

DABS memory_space,address,bytes

where memory_space is a number representing the memory space in which the reservation will
take place, address is the address at which the reservation will take place, and bytes is the
number of bytes that is to be reserved. This directive differs to the DS directive in that it does not
allocate space at the current location in the current psect, but instead can be used to reserve memory
at any location.

The memory space number is the same as the number specified with the space flag option to
psects. Devices with a single flat memory space will typically always use O as the space value;
devices with separate code and data spaces typically use O for the code space and 1 for the data
space.

The code generator issues a DABS directive for every user-defined absolute C variable, or for
variables that have been allocated an address by the code generator.

170

Macro Assembler HI-TECH C Assembly Language

4.3.10.11 FNCALL
This directive takes the form:
FNCALL funl, fun2

FNCALL is usually used in compiler generated code. It tells the linker that function funl calls function
fun2. This information is used by the linker when performing call graph analysis. If you write
assembler code which calls a C function, use the FNCALL directive to ensure that your assembler
function is taken into account. For example, if you have an assembler routine called _fred which
calls a C routine called foo (), in your assembler code you should write:

FNCALL _fred,_foo

4.3.10.12 FNROOT

This directive tells the assembler that a function is a root function and thus forms the root of a call
graph. It could either be the C main () function or an interrupt function. For example, the C main
module produce the directive:

FNROOT _main

4.3.10.13 IF, ELSIF, ELSE and ENDIF

These directives implement conditional assembly. The argument to IF and ELSIF should be an
absolute expression. If it is non-zero, then the code following it up to the next matching ELSE,
ELSIF or ENDIF will be assembled. If the expression is zero then the code up to the next matching
ELSE or ENDIF will be skipped.

At an ELSE the sense of the conditional compilation will be inverted, while an ENDIF will termi-
nate the conditional assembly block. Example:

IF ABC

goto aardvark
ELSIF DEF

goto denver
ELSE

goto grapes
ENDIF

In this example, if ABC is non-zero, the first jmp instruction will be assembled but not the second or
third. If ABC is zero and DEF is non-zero, the second jmp will be assembled but the first and third
will not. If both ABC and DEF are zero, the third jmp will be assembled. Conditional assembly blocks
may be nested.

171

HI-TECH C Assembly Language Macro Assembler

4.3.10.14 MACRO and ENDM

These directives provide for the definition of macros. The MACRO directive should be preceded by
the macro name and optionally followed by a comma-separated list of formal parameters. When the
macro is used, the macro name should be used in the same manner as a machine opcode, followed
by a list of arguments to be substituted for the formal parameters.

For example:

;macro: storem
;args: argl - the NAME of the source variable
; arg2 - the literal value to load
;descr: Loads two registers with the value in the variable:
storem MACRO argl,arg2
movlw &arg2
movwf &argl
ENDM

When used, this macro will expand to the 2 instructions in the body of the macro, with the formal
parameters substituted by the arguments. Thus:

storem tempvar, 2
expands to:

movlw 2
movwf tempvar

A point to note in the above example: the & character is used to permit the concatenation of macro
parameters with other text, but is removed in the actual expansion.

A comment may be suppressed within the expansion of a macro (thus saving space in the macro
storage) by opening the comment with a double semicolon, ; ;.

When invoking a macro, the argument list must be comma-separated. If it is desired to include a
comma (or other delimiter such as a space) in an argument then angle brackets < and > may be used
to quote the argument. In addition the exclamation mark, | may be used to quote a single character.
The character immediately following the exclamation mark will be passed into the macro argument
even if it is normally a comment indicator.

If an argument is preceded by a percent sign %, that argument will be evaluated as an expression
and passed as a decimal number, rather than as a string. This is useful if evaluation of the argument
inside the macro body would yield a different result.

The nul operator may be used within a macro to test a macro argument, for example:

172

Macro Assembler HI-TECH C Assembly Language

IF nul arg3 ; argument was not supplied.
ELSE ; argument was supplied
ENDIF

By default, the assembly list file will show macro in an unexpanded format, i.e. as the macro was
invoked. Expansion of the macro in the listing file can be shown by using the EXPAND assembler
control, see Section 4.3.11.3,

4.3.10.15 LOCAL

The LOCAL directive allows unique labels to be defined for each expansion of a given macro. Any
symbols listed after the LOCAL directive will have a unique assembler generated symbol substituted
for them when the macro is expanded. For example:

down MACRO count

LOCAL more
more: decfsz count
goto more

ENDM

when expanded will include a unique assembler generated label in place of more. For example:
down foobar
expands to:

2?0001 decfsz foobar
goto 220001

if invoked a second time, the label more would expand to 220002.

4.3.10.16 ALIGN

The ALIGN directive aligns whatever is following, data storage or code etc., to the specified boundary
in the psect in which the directive is found. The boundary is specified by a number following the
directive and it specifies a number of bytes. For example, to align output to a 2 byte (even) address
within a psect, the following could be used.

ALIGN 2

173

HI-TECH C Assembly Language Macro Assembler

Note, however, that what follows will only begin on an even absolute address if the psect begins on
an even address. The ALIGN directive can also be used to ensure that a psect’s length is a multiple
of a certain number. For example, if the above ALIGN directive was placed at the end of a psect, the
psect would have a length that was always an even number of bytes long.

4.3.10.17 REPT

The REPT directive temporarily defines an unnamed macro, then expands it a number of times as
determined by its argument. For example:

REPT 3
addwf fred,w
ENDM

will expand to

addwf fred,w
addwf fred,w
addwf fred,w

4.3.10.18 IRP and IRPC

The IRP and IRPC directives operate similarly to REPT, however instead of repeating the block a
fixed number of times, it is repeated once for each member of an argument list. In the case of IRP
the list is a conventional macro argument list, in the case or IRPC it is each character in one argument.
For each repetition the argument is substituted for one formal parameter.

For example:

PSECT idata_0
IRP number, 4865h, 6C6Ch, 6F00h
DW number

ENDM

PSECT text0

would expand to:

PSECT idata_0
DW 4865h
DW 6C6Ch
DW 6F00h

PSECT textO

174

Macro Assembler HI-TECH C Assembly Language

Note that you can use local labels and angle brackets in the same manner as with conventional
macros.

The IRPC directive is similar, except it substitutes one character at a time from a string of non-
space characters.

For example:

PSECT romdata, class=CODE,delta=2
IRPC char,ABC
DB ’char’

ENDM

PSECT text

will expand to:

PSECT romdata, class=CODE,delta=2
DB A’
DB B’
DB 'C’

PSECT text

4.3.10.19 BANKSEL

This directive can be used to generate code to select the bank of the operand. The operand should be
the symbol or literal address of an object that resides in the data memory.

The generated code will use a MOVLB instruction.

For example:

MOVLW 20
BANKSEL (_foobar) ; select bank for next file instruction
MOVWE BANKMASK (_foobar) ; write data and mask address

4.3.10.20 PROCESSOR

The output of the assembler may vary depending on the target device. The device name is typically
set using the -—-CHIP option to the command-line driver PICC18, see Section 2.6.21, or using the
assembler -P option, see Table 4.1, but can also be set with this directive, e.g.

PROCESSOR 16F877

175

HI-TECH C Assembly Language Macro Assembler

4.3.10.21 SIGNAT

This directive is used to associate a 16-bit signature value with a label. At link time the linker checks
that all signatures defined for a particular label are the same and produces an error if they are not. The
SIGNAT directive is used by the HI-TECH C compiler to enforce link time checking of C function
prototypes and calling conventions.

Use the SIGNAT directive if you want to write assembly language routines which are called from
C. For example:

SIGNAT _fred, 8192

will associate the signature value 8192 with the symbol _fred. If a different signature value for
_fredis present in any object file, the linker will report an error.

4.3.11 Assembler Controls

Assembler controls may be included in the assembler source to control assembler operation such as
listing format. These keywords have no significance anywhere else in the program. The control is
invoked by the directive OPT followed by the control name. Some keywords are followed by one or
more parameters. For example:

OPT EXPAND

A list of keywords is given in Table 4.7, and each is described further below. Some controls have
shorter forms, which are indicated in the table.

4.3.11.1 ASMOPT_OFF and ASMOPT_ON

The ASMOPT_OFF control disables optimization of the subsequent assembly code up to the next
ASMOPT_ON control. These controls only have an effect if the assembler optimizer is enabled, see
2.6.47.

4.3.11.2 COND

Any conditional code will be included in the listing output. See also the NOCOND control in Section
4.3.11.6.

4.3.11.3 EXPAND

When EXPAND is in effect, the code generated by macro expansions will appear in the listing output.
See also the NOEXPAND control in Section 4.3.11.7.

176

Macro Assembler

HI-TECH C Assembly Language

Table 4.7: PIC18 assembler controls

Control’ Meaning Format
ASMOPT_ON Optimizer the following code if the | OPT ASMOPT_ON
assembler optimizer is enabled
ASMOPT_OFF Do not optimize the following code | OPT ASMOPT_OFF
COND | CO Include conditional code in the OPT COND
listing
EXPAND Expand macros in the listing output | OPT EXPAND
INCLUDE | IC Textually include another source OPT INCLUDE <pathname>
file
LISTILI Define options for listing output OPT LIST [<listopt>, ...,
<listopt>]
NOCOND | NOCO | Leave conditional code out of the OPT NOCOND
listing
NOEXPAND Disable macro expansion OPT NOEXPAND
NOLIST INOLI | Disable listing output OPT NOLIST
PAGE Start a new page in the listing OPT PAGE
output
STACK Specify the stack depth available OPT STACK 10
for a routine
SUBTITLE Specify the subtitle of the program | OPT SUBTITLE “<subtitle>"
TITLEITT Specify the title of the program OPT TITLE “<title>”

177

HI-TECH C Assembly Language Macro Assembler

Table 4.8: LIST control options

List Option Default Description
c=nnn 80 Set the page (i.e. column) width.
n=nnn 59 Set the page length.
t=ON/|OFF OFF Truncate listing output lines. The default wraps lines.
p=<processor> | n/a Set the processor type.
r=<radix> hex Set the default radix to hex, dec or oct.
x=ON|OFF OFF Turn macro expansion on or off.

43.11.4 INCLUDE

This control causes the file specified by pat hname to be textually included at that point in the
assembly file. The INCLUDE control must be the last control keyword on the line, for example:

OPT INCLUDE "options.h"

The driver does not pass any search paths to the assembler, so if the include file is not located in the
working directory, the pathname must specify the exact location.

See also the driver option -P in Section 2.6.12 which forces the C preprocessor to preprocess
assembly file, thus allowing use of preprocessor directives, such as #include (see Section 3.11.2).

43.11.5 LIST

If the listing was previously turned off using the NOLIST control, the LIST control on its own will
turn the listing on.

Alternatively, the LIST control may includes options to control the assembly and the listing. The
options are listed in Table 4.8.

See also the NOLIST control in Section 4.3.11.8.

4.3.11.6 NOCOND

Using this control will prevent conditional code from being included in the listing output. See also
the COND control in Section 4.3.11.2.

4.3.11.7 NOEXPAND

NOEXPAND disables macro expansion in the listing file. The macro call will be listed instead. See
also the EXPAND control in Section 4.3.11.3. Assembly macro are discussed in Section 4.3.10.14.

178

Macro Assembler HI-TECH C Assembly Language

4.3.11.8 NOLIST

This control turns the listing output off from this point onward. See also the LIST control in Section
43.11.5.

4.3.11.9 NOXREF

NOXREF will disable generation of the raw cross reference file. See also the XREF control in Section
43.11.14.

43.11.10 PAGE

PAGE causes a new page to be started in the listing output. A Control-L (form feed) character will
also cause a new page when encountered in the source.

43.11.11 STACK

The STACK control is added by the code generator to indicate to the assembler the available stack
level for an assembly routine. It is typically placed after an assembly label. The assembler uses this
information if code is being optimized. Procedural abstraction can increase stack usage and can only
be employed in a routine if this will not cause the hardware stack to overflow.

Misuse of this control can lead to code failure the stack depth specified is not correct.

4.3.11.12 SUBTITLE

SUBTITLE defines a subtitle to appear at the top of every listing page, but under the title. The string
should be enclosed in single or double quotes. See also the TITLE control in Section 4.3.11.13.
4.3.11.13 TITLE

This control keyword defines a title to appear at the top of every listing page. The string should be
enclosed in single or double quotes. See also the SUBTITLE control in Section 4.3.11.12.

4.3.11.14 XREF

XREF is equivalent to the driver command line option -—CR (see Section 2.6.25). It causes the assem-
bler to produce a raw cross reference file. The utility CREF should be used to actually generate the
formatted cross-reference listing.

179

Assembly List Files Macro Assembler

4.4 Assembly List Files

The assembler will produce an assembly list file if instructed. The PICC18 driver option ——ASMLIST
is typically used to request generation of such a file, see Section 2.6.19.

The assembly list file shows the assembly output produced by the compiler for both C and as-
sembly source code. If the assembler optimizers are enabled, the assembly output may be different
to assembly source code and so is still useful for assembly programming.

The list file is in a human readable form and cannot take any further part in the compilation
sequence. It differs from an assembly output file in that it contains address and op-code data. In ad-
dition, the assembler optimizer simplifies some expressions and removes some assembler directives
from the listing file for clarity, although these directives are included in the true assembly output files.
If you are using the assembly list file to look at the code produced by the compiler, you may wish to
turn off the assembler optimizer so that all the compiler-generated directives are shown in this file.
Re-enable the optimizer when continuing development. Section 2.6.47 gives more information on
controlling the optimizers.

Provided the link stage has successfully concluded, the listing file will be updated by the linker
so that it contains absolute addresses and symbol values. Thus you may use the assembler list file to
determine the position of, and exact op codes of, instructions.

There is one assembly list file produce by the assembler for each assembly file passed to it, and
so there will be one file produced for all the C source code in a project, including p-code based
library code. This file will also contains some of the C initialization that forms part of the runtime
startup code. There will also be one file produced for each assembly source file. There is typically
at least one assembly file in each project, that containing some of the runtime startup file, typically
called startup.as.

4.4.1 General Format

The format of the main listing has the form as shown in Section Figure 4.1.

The line numbers purely relate to the assembly list file and are not associated with the lines
numbers in the C or assembly source files. Any assembly that begins with a semi- colon indicates it
is a comment added by the code generator. Such comments contain either the original source code
which corresponds to the generated assembly, or is a comment inserted by the code generator to
explain some action taken.

Before the output for each function there is detailed information regarding that function summa-
rized by the code generator. This information relates to register usage, local variable information,
functions called and the calling function.

180

Macro Assembler Assembly List Files

768 o;spz_inpADC.c: 119: void ADC_start(unsigned char chan)
769 ;Sp2_inpADC.c: 120: {
770 10243 _ADC_start: :
771 ; Regs used in _ADC_start: [reg@,reg3] @ line number
772 |0243 |00A3 instruction operands
73 ;sp2_inpADC.c: 121: chan &= 0x07; @ address
774 10244 |3007 instruction operands
775 V0245 |05A3 instruction operands 9 op code
776 e,inpADC.c: 128: }
777 0252 Y0008 instruction o source comment
778 ; ========= function _ADC_start ends ========
© assembly

Figure 4.1: General Form of Assembly Listing File

4.4.2 Function Information

For each C function, printed before the function’s assembly label (search for the function’s name
immediately followed by a colon, :), is general information relating to the resources used by that
function. A typical print out is shown in Figure 4.2. Most of the information is self explanatory, but
special comments follow.

The locations shown use the format offset [space]. For example, a location of 42[BANKO]
means that the variables was located in the bank 0 memory space and that it appears at an offset of
42 bytes into the compiled stack component in this space, see Section 3.4.1.1.

Whenever pointer variables are shown, these are often accompanied by the targets the pointer can
reference after the arrow ->, see Section 4.4.3. The auto and parameter section of this information
is especially useful as the size of pointers is dynamic, see 3.3.12. This information shows the actual
number of bytes assigned to each pointer variable.

The tracked objects is generally not used. It indicates the known state of the currently selected
RAM bank on entry to the function and at its exit points. It also indicates the bank selection bits that
did, or did not, change throughout the function.

The hardware stack information shows how many stack levels were taken up by this function
alone and the total levels used by this function and any functions it calls.

Functions which use a non-reentrant model are those which allocate auto and parameter vari-
ables to a compiled stack and which are, hence, not reentrant.

4.4.3 Pointer Reference Graph

Other important information contained in the assembly list file is the pointer reference graph (look
for pointer list with targets: in the list file). This is a list of each and every pointer contained in the
program and each target the pointer can reference through the program. The size and type of each
target is indicated as well as the size and type of the pointer variable itself.

181

Assembly List Files Macro Assembler

182

406 ok ok ok ok ok ok ok ok ok ok ok kK ok function _r‘ender 4 3k ok ok ok ok ok ok ok sk ok ok Kok Kok ok
4065 55 Defined at:

4066 line 29 in file "draw.c" 0

406 Parameters: Size Location Type

4068 ;; None

4069 ;; Auto vars: Size Location Type

4070 ;; 111 4 42[BANKQ] long

4071 ;; x ° 2 46[BANK®] volatile int

4072 ;; cp 1 41[BANK@] PTR unsigned char
4073 -> inputData(2),

407 Return value: Size Location Type

4075 None void
40760Register‘s used:

4077 _ wreg, fsr@l, fsroh, status,2, status,@, pclath, cstack
4078| Tracked objects:

4079 7 On entry : 17F/@

4080 ;; On exit : 0/0

4081 ;; Unchanged: FFEQ0/Q

4082 ;; Data sizes: COMMON BANK@ BANK1 BANK2
4083 Params: [[[0
408: Locals: [7 [0
4085 75 Temps:) 5))
4086 ;; Totals:) 12) .0
4087 ;;Total ram usage: 12 bytes ofunctlon's name

4090 ; This function calls: size, location and type of parameters
4091 ;; _lrv

4092 ;; @ ___altofl
4093 ;; ___awdiv

4094 o ___awmod

4095 This function is called by: (P registers that the function code used
4096 o _main .
4@97@This function uses a non-reentrd 7 os(?eI'FCted (EIAR! [l om @utiny et ol
8
9

4088 i Hardware stack levels used: - : P

file name apd line number of definition
4089 Hardware stack levels required caﬁeg: AP

size, location and type of auto variables

size, location and type of return value

RAM memory summary for entire function

hardware stack requirements

functions called by this function
which functions call this function
how the function was encoded

Figure 4.2: Function Information

Macro Assembler Assembly List Files

For example, the following shows a pointer called task_tmr in the C code, and which is local
to the function timer_intr (). Itis a pointer to an unsigned int and it is one byte wide. There is
only one target to this pointer and it is the member timer_count in the structure called task. This
target variable resides in the BANKO class and is two bytes wide.

timer_intr@task_tmr PTR unsigned int size(l); Largest target is 2
-> task.timer_count (BANKO[2]),

The pointer reference graph shows both pointers to data objects and pointers to functions.

4.4.4 Call Graph

The other important information block in the assembly list file is the call graph (look for Call Ggraph
Tables: in the list file). This is produced for target devices that use a com- piled stack to facilitate lo-
cal variables, such as function parameters and auto variables. See Section 4.5.4 ?Absolute Variables?
for more detailed information on compiled stack operation.

The call graph in the list file shows the information collated and interpreted by the code generator,
which is primarily used to allow overlapping of functions? auto-parameter blocks (APBs). The
following information can be obtained from studying the call graph.

e The functions in the program that are “root” nodes marking the top of a call tree, and which
are called spontaneously

The functions that the linker deemed were called, or may have been called, during program
execution

The program’s hierarchy of function calls

The size of the auto and parameter areas within each function’s APB
e The offset of each function’s APB within the compiled stack
e The estimated call tree depth.

These features are discussed below.

A typical call graph may look that shown in Figure 4.3.

The graph starts with the function main (). Note that the function name will always be shown in
the assembly form, thus the function main () appears as the symbol _main. main () is always a root
of a call tree. Interrupt functions will form separate trees.

All the functions that main () calls, or may call, are shown below. These have been grouped in
the orange box in the figure. A function’s inclusion into the call graph does not imply the function
was actually called, but there is a possibility that the function was called. For example, code such
as:

183

Assembly List Files Macro Assembler

Call graph: Base Space Used Autos Args Refs Density
_main 10 0 24 0.00
4 COMMO 6
16 BANKO 4
_rv
_rvx
_rvy
_rvx 0 2 9 0.00
8 BANKO 2
_rv2
_rvy 0 2 3 0.00
@ BANKO 2
_rv 8 4 12 0.00
0 COMMO 4
8 BANKO 8
_rv2
zrv2 4 4 6 0.00
@ BANKO 8

Estimated maximum call depth 2

Figure 4.3: Call Graph Form

int test(int a) {

if (a)
foo();

else
bar();

will list foo () and bar () under test (), as either may be called. If a is always true, then the
function bar () will never be called even though it appears in the call graph.

In addition to these functions there is information relating to the memory allocated in the com-
piled stack for main (). This memory will be used for auto, temporary and parameter variables
defined in main (). The only difference between an auto and temporary variable is that auto vari-
ables are defined by the programmer, and temporaries are defined by the compiler, but both behave
in the same way.

In the orange box for main () you can see that it defines 10 auto and temporary variable. It de-
fines no parameters (main () never has parameters). There is a total of 24 references in the assembly
code to local objects in main ().

Rather than the compiled stack being one memory allocation in one memory space, it can have
components placed in multiple memory spaces to utilize all available memory of the target device.
This break down is shown under the memory summary line for each function. In this example, it
shows that some of the local objects for main () are placed in the common memory, but others are
placed in bank 0 data RAM.

The Used column indicates how many bytes of memory are used by each section of the compiled
stack and the Space column indicates in which space that has been placed. The Base value indicates

184

Macro Assembler Assembly List Files

the offset that block has in the respective section of the compiled stack. For example, the figure tells
us main () has 6 bytes of memory allocated at an offset of 4 in the compiled stack section that lives
in common memory. It also has 4 bytes of memory allocated in bank 0 memory at an offset of 16 in
the bank 0 compiled stack component.

Below the information for main () (outside the orange box) you will see the same information
repeated for the functions that main () called, viz. rv (), rvx() and rvy (). Indentation is used
to indicate the maximum depth that function reaches in the call graph. The arrows in the figure
highlight this indentation.

After each tree in the call graph, there is an indication of the maximum call (stack) depth that
might be realized by that tree. This may be used as a guide to the stack usage of the program. No
definitive value can be given for the program’s total stack usage for several reasons:

e Certain parts of the call tree may never be reached, reducing that tree’s stack usage.

e The contribution of interrupt (or other) trees to the main () tree cannot be determined as the
point in main’s call tree at which the interrupt (or other function invocation) will occur cannot
be known,;

e The assembler optimizer may have replaced function calls with jumps to functions, reducing
that tree’s stack usage.

e The assembler’s procedural abstraction optimizations may have added in calls to abstracted
routines. (Checks are made to ensure this does not exceed the maximum stack depth.)

The code generator also produces a warning if the maximum stack depth appears to have been
exceeded. For the above reasons, this warning, too, is intended to be a only a guide to potential stack
problems.

4.4.5 Call Graph Critical Paths

Immediately prior to the call graph tables in the list file are the critical paths for memory usage
identified in the call graphs. A critical path is printed for each memory space and for each call
graph. Look for a line similar to Critical Paths under _main in BANKO, which, for this example,
indicates the critical path for the main () function (the root of one call graph) in bank 0 memory.
There will be one call graph for the function main () and another for each interrupt function, and
each of these will appear for every memory space the device defines.

A critical path here represents the biggest range of APBs stacked together in as a contiguous
block. Essentially, it identifies those functions whose APBs are contributing to the program’s mem-
ory usage in that particular memory space. If you can reduce the memory usage of these functions
in the corresponding memory space, then you will affects the program’s total memory usage in that
memory space.

185

Assembly List Files Macro Assembler

This information may be presented as follows.

3793 ;; Critical Paths under _main in BANKO

3794 ;;

3795 ;; _main->_foobar
3796 ;; _foobar->___ flsub
3797 ;; _ flsub->__ fladd

In this example, it shows that of all the call graph paths starting from the function main (), the
path main () calls foobar (), which calls £1sub (), which calls fladd (), is using the largest block
of memory in bank 0 RAM. The exact memory usage of each function is shown in the call graph
tables.

The memory used by functions that are not in the critical path will overlap entirely with that in
the critical path. Reducing the memory usage of these will have no impact on the memory usage of
the entire program.

186

Chapter 5

Linker and Utilities

5.1 Introduction

HI-TECH C incorporates a relocating assembler and linker to permit separate compilation of C
source files. This means that a program may be divided into several source files, each of which
may be kept to a manageable size for ease of editing and compilation, then each source file may be
compiled separately and finally all the object files linked together into a single executable program.

This chapter describes the theory behind and the usage of the linker. Note however that in most
instances it will not be necessary to use the linker directly, as the compiler driver will automatically
invoke the linker with all necessary arguments. Using the linker directly is not simple, and should
be attempted only by those with a sound knowledge of the compiler and linking in general.

If it is absolutely necessary to use the linker directly, the best way to start is to copy the linker
arguments constructed by the compiler driver, and modify them as appropriate. This will ensure that
the necessary startup module and arguments are present.

Note also that the linker supplied with HI-TECH C is generic to a wide variety of compilers for
several different processors. Not all features described in this chapter are applicable to all compilers.

5.2 Relocation and Psects

The fundamental task of the linker is to combine several relocatable object files into one. The
object files are said to be relocatable since the files have sufficient information in them so that any
references to program or data addresses (e.g. the address of a function) within the file may be
adjusted according to where the file is ultimately located in memory after the linkage process. Thus
the file is said to be relocatable. Relocation may take two basic forms; relocation by name, i.e.

187

Program Sections Linker and Utilities

relocation by the ultimate value of a global symbol, or relocation by psect, i.e. relocation by the
base address of a particular section of code, for example the section of code containing the actual
executable instructions.

5.3 Program Sections

Any object file may contain bytes to be stored in memory in one or more program sections, which
will be referred to as psects. These psects represent logical groupings of certain types of code bytes in
the program. In general the compiler will produce code in three basic types of psects, although there
will be several different types of each. The three basic kinds are text psects, containing executable
code, data psects, containing initialised data, and bss psects, containing uninitialised but reserved
data.

The difference between the data and bss psects may be illustrated by considering two external
variables; one is initialised to the value 1, and the other is not initialised. The first will be placed into
the data psect, and the second in the bss psect. The bss psect is always cleared to zeros on startup of
the program, thus the second variable will be initialised at run time to zero. The first will however
occupy space in the program file, and will maintain its initialised value of 1 at startup. It is quite
possible to modify the value of a variable in the data psect during execution, however it is better
practice not to do so, since this leads to more consistent use of variables, and allows for restartable
and ROMable programs.

For more information on the particular psects used in a specific compiler, refer to the appropriate
machine-specific chapter.

5.4 Local Psects

Most psects are global, i.e. they are referred to by the same name in all modules, and any reference
in any module to a global psect will refer to the same psect as any other reference. Some psects
are local, which means that they are local to only one module, and will be considered as separate
from any other psect even of the same name in another module. Local psects can only be referred
to at link time by a class name, which is a name associated with one or more psects via the PSECT
directive class= in assembler code. See Section 4.3.10.3 for more information on PSECT options.

5.5 Global Symbols
The linker handles only symbols which have been declared as GLOBAL to the assembler. The code

generator generates these assembler directives whenever it encounters global C objects. At the C
source level, this means all names which have storage class external and which are not declared

188

Linker and Utilities Link and load addresses

as static. These symbols may be referred to by modules other than the one in which they are
defined. It is the linker’s job to match up the definition of a global symbol with the references to it.
Other symbols (local symbols) are passed through the linker to the symbol file, but are not otherwise
processed by the linker.

5.6 Link and load addresses

The linker deals with two kinds of addresses; link and load addresses. Generally speaking the link
address of a psect is the address by which it will be accessed at run time. The load address, which
may or may not be the same as the link address, is the address at which the psect will start within the
output file (HEX or binary file etc.). In the case of the 8086 processor, the link address roughly cor-
responds to the offset within a segment, while the load address corresponds to the physical address
of a segment. The segment address is the load address divided by 16.

Other examples of link and load addresses being different are; an initialised data psect that is
copied from ROM to RAM at startup, so that it may be modified at run time; a banked text psect that
is mapped from a physical (== load) address to a virtual (== link) address at run time.

The exact manner in which link and load addresses are used depends very much on the particular
compiler and memory model being used.

5.7 Operation
A command to the linker takes the following form:

hlink! options files ...

Options is zero or more linker options, each of which modifies the behaviour of the linker in some
way. F'iles is one or more object files, and zero or more library names. The options recognised by
the linker are listed in Table 5.1 and discussed in the following paragraphs.

Table 5.1: Linker command-line options

Option Effect

-8 Use 8086 style segment:offset address form
-Aclass=low-high, ... Specify address ranges for a class

-Cx Call graph options (obsolete)

continued. . .

'In earlier versions of HI-TECH C the linker was called LINK . EXE

189

Operation

Linker and Utilities

Table 5.1: Linker command-line options

Option Effect

-Cpsect=class Specify a class name for a global psect

-Chaseaddr Produce binary output file based at baseaddr
-Dclass=delta Specify a class delta value

-Dsymfile Produce old-style symbol file

-Eerrfile Write error messages to errfile

-F Produce . ob7j file with only symbol records

-Gspec Specify calculation for segment selectors
-Hsymfile Generate symbol file

-Htsymfile Generate enhanced symbol file

-I Ignore undefined symbols

-Jnum Set maximum number of errors before aborting

-K Prevent overlaying function parameter and auto areas
-L Preserve relocation items in .ob]j file

-LM Preserve segment relocation items in . ob7 file

-N Sort symbol table in map file by address order

-Nc Sort symbol table in map file by class address order
-Ns Sort symbol table in map file by space address order
-Mmapfile Generate a link map in the named file

-Ooutfile Specify name of output file

-Pspec Specify psect addresses and ordering

-Qprocessor Specify the processor type (for cosmetic reasons only)
=S Inhibit listing of symbols in symbol file
-Sclass=1imit [, bound] | Specify address limit, and start boundary for a class of psects
-Usymbol Pre-enter defined or undefined symbol in table
-Vavmap Use file avmap to generate an Avocet format symbol file
-Wwarnlev Set warning level (-9 to 9)

-Wwidth Set map file width (>=10)

-X Remove any local symbols from the symbol file

-7 Remove trivial local symbols from the symbol file

5.7.1 Numbers in linker options

Several linker options require memory addresses or sizes to be specified. The syntax for all these is
similar. By default, the number will be interpreted as a decimal value. To force interpretation as a
hex number, a trailing H should be added, e.g. 765FH will be treated as a hex number.

190

Linker and Utilities Operation

5.7.2 -Aclass=low-high,...

Normally psects are linked according to the information given to a -P option (see below) but some-
times it is desired to have a class of psects linked into more than one non-contiguous address range.
This option allows a number of address ranges to be specified for a class. For example:

—-ACODE=1020h-7FFEh, 8000h-BFFEh

specifies that the class CODE is to be linked into the given address ranges. Note that a contribution
to a psect from one module cannot be split, but the linker will attempt to pack each block from each
module into the address ranges, starting with the first specified.

Where there are a number of identical, contiguous address ranges, they may be specified with a
repeat count, e.g.

—-ACODE=0-FFFFhx16

specifies that there are 16 contiguous ranges each 64k bytes in size, starting from zero. Even though
the ranges are contiguous, no code will straddle a 64k boundary. The repeat count is specified as the
character x or * after a range, followed by a count.

573 -Cx

This option is now obsolete.

5.7.4 -Cpsect=class

This option will allow a psect to be associated with a specific class. Normally this is not required on
the command line since classes are specified in object files.

5.7.5 -Dclass=delta

This option allows the delta value for psects that are members of the specified class to be defined.
The delta value should be a number and represents the number of bytes per addressable unit of
objects within the psects. Most psects do not need this option as they are defined with a delta value.

5.7.6 -Dsymfile

Use this option to produce an old-style symbol file. An old-style symbol file is an ASCII file, where
each line has the link address of the symbol followed by the symbol name.

191

Operation Linker and Utilities

5.7.7 -Eerrfile

Error messages from the linker are written to standard error (file handle 2). Under DOS there is no
convenient way to redirect this to a file (the compiler drivers will redirect standard error if standard
output is redirected). This option will make the linker write all error messages to the specified file
instead of the screen, which is the default standard error destination.

5.78 -F

Normally the linker will produce an object file that contains both program code and data bytes, and
symbol information. Sometimes it is desired to produce a symbol-only object file that can be used
again in a subsequent linker run to supply symbol values. The -F option will suppress data and code
bytes from the output file, leaving only the symbol records.

This option can be used when producing more than one hex file for situations where the program
is contained in different memory devices located at different addresses. The files for one device are
compiled using this linker option to produce a symbol-only object file; this is then linked with the
files for the other device. The process can then be repeated for the other files and device.

5.7.9 -Gspec

When linking programs using segmented, or bank-switched psects, there are two ways the linker
can assign segment addresses, or selectors, to each segment. A segment is defined as a contiguous
group of psects where each psect in sequence has both its link and load address concatenated with
the previous psect in the group. The segment address or selector for the segment is the value derived
when a segment type relocation is processed by the linker.

By default the segment selector will be generated by dividing the base load address of the seg-
ment by the relocation quantum of the segment, which is based on the reloc= flag value given to
psects at the assembler level. This is appropriate for 8086 real mode code, but not for protected mode
or some bank-switched arrangements. In this instance the -G option is used to specify a method for
calculating the segment selector. The argument to -G is a string similar to:

A/10h-4h

where A represents the load address of the segment and / represents division. This means "Take the
load address of the psect, divide by 10 hex, then subtract 4". This form can be modified by substi-
tuting N for A, * for / (to represent multiplication), and adding rather than subtracting a constant.
The token N is replaced by the ordinal number of the segment, which is allocated by the linker. For
example:

N*8+4

192

Linker and Utilities Operation

means "take the segment number, multiply by 8 then add 4". The result is the segment selector. This
particular example would allocate segment selectors in the sequence 4, 12, 20, ... for the number
of segments defined. This would be appropriate when compiling for 80286 protected mode, where
these selectors would represent LDT entries.

5.7.10 -Hsymfile

This option will instruct the linker to generate a symbol file. The optional argument symfile
specifies a file to receive the symbol file. The default file name is 1. sym.

5.7.11 -H+symfile

This option will instruct the linker to generate an enhanced symbol file, which provides, in addition
to the standard symbol file, class names associated with each symbol and a segments section which
lists each class name and the range of memory it occupies. This format is recommended if the code
is to be run in conjunction with a debugger. The optional argument symfile specifies a file to
receive the symbol file. The default file name is 1. sym.

5.7.12 -Jerrcount

The linker will stop processing object files after a certain number of errors (other than warnings).
The default number is 10, but the -J option allows this to be altered.

5713 -K

For compilers that use a compiled stack, the linker will try and overlay function auto and parameter
areas in an attempt to reduce the total amount of RAM required. For debugging purposes, this feature
can be disabled with this option.

5714 -1

Usually failure to resolve a reference to an undefined symbol is a fatal error. Use of this option will
cause undefined symbols to be treated as warnings instead.

5.715 -L

When the linker produces an output file it does not usually preserve any relocation information, since
the file is now absolute. In some circumstances a further "relocation" of the program will be done at
load time, e.g. when running a .exe file under DOS or a .prg file under TOS. This requires that some

193

Operation Linker and Utilities

information about what addresses require relocation is preserved in the object (and subsequently the
executable) file. The -L option will generate in the output file one null relocation record for each
relocation record in the input.

5.7.16 -LM

Similar to the above option, this preserves relocation records in the output file, but only segment
relocations. This is used particularly for generating . exe files to run under DOS.

5.7.17 -Mmapfile

This option causes the linker to generate a link map in the named file, or on the standard output if
the file name is omitted. The format of the map file is illustrated in Section 5.9.

5.7.18 -N, -Ns and-Nc

By default the symbol table in the link map will be sorted by name. The -N option will cause it to
be sorted numerically, based on the value of the symbol. The -Ns and -Nc options work similarly
except that the symbols are grouped by either their space value, or class.

5.7.19 -Ooutfile

This option allows specification of an output file name for the linker. The default output file name is
1.0bj. Use of this option will override the default.

5.7.20 -Pspec

Psects are linked together and assigned addresses based on information supplied to the linker via -P
options. The argument to the —P option consists basically of comma-separated sequences thus:

-Ppsect=1nkaddr+min/ldaddr+min, psect=1nkaddr/ldaddr,

There are several variations, but essentially each psect is listed with its desired link and load ad-
dresses, and a minimum value. All values may be omitted, in which case a default will apply,
depending on previous values.

The minimum value, min, is preceded by a + sign, if present. It sets a minimum value for the
link or load address. The address will be calculated as described below, but if it is less than the
minimum then it will be set equal to the minimum.

The link and load addresses are either numbers as described above, or the names of other psects
or classes, or special tokens. If the link address is a negative number, the psect is linked in reverse

194

Linker and Utilities Operation

order with the top of the psect appearing at the specified address minus one. Psects following a
negative address will be placed before the first psect in memory. If a link address is omitted, the
psect’s link address will be derived from the top of the previous psect, e.g.

-Ptext=100h, data, bss

In this example the text psect is linked at 100 hex (its load address defaults to the same). The data
psect will be linked (and loaded) at an address which is 100 hex plus the length of the text psect,
rounded up as necessary if the data psect has a reloc= value associated with it. Similarly, the bss
psect will concatenate with the data psect. Again:

-Ptext=-100h, data, bss

will link in ascending order bss, data then text with the top of text appearing at address Ofth.

If the load address is omitted entirely, it defaults to the same as the link address. If the slash /
character is supplied, but no address is supplied after it, the load address will concatenate with the
previous psect, e.g.

-Ptext=0,data=0/,bss

will cause both text and data to have a link address of zero, text will have a load address of 0, and
data will have a load address starting after the end of text. The bss psect will concatenate with data
for both link and load addresses.

The load address may be replaced with a dot . character. This tells the linker to set the load
address of this psect to the same as its link address. The link or load address may also be the name of
another (already linked) psect. This will explicitly concatenate the current psect with the previously
specified psect, e.g.

-Ptext=0,data=8000h/,bss/. -Pnvram=bss, heap

This example shows text at zero, data linked at 8000h but loaded after text, bss is linked and
loaded at 8000h plus the size of data, and nvram and heap are concatenated with bss. Note here
the use of two -P options. Multiple -P options are processed in order.

If -A options have been used to specify address ranges for a class then this class name may be
used in place of a link or load address, and space will be found in one of the address ranges. For
example:

-ACODE=8000h-BFFEh, E0O00h-FFFEh
-Pdata=C000h/CODE

195

Operation Linker and Utilities

This will link data at COOOh, but find space to load it in the address ranges associated with CODE.
If no sufficiently large space is available, an error will result. Note that in this case the data psect
will still be assembled into one contiguous block, whereas other psects in the class CODE will be
distributed into the address ranges wherever they will fit. This means that if there are two or more
psects in class CODE, they may be intermixed in the address ranges.

Any psects allocated by a -P option will have their load address range subtracted from any
address ranges specified with the -2 option. This allows a range to be specified with the -A option
without knowing in advance how much of the lower part of the range, for example, will be required
for other psects.

5.7.21 -Qprocessor

This option allows a processor type to be specified. This is purely for information placed in the map
file. The argument to this option is a string describing the processor.

5.722 -S
This option prevents symbol information relating from being included in the symbol file produced
by the linker. Segment information is still included.

5.7.23 -Sclass=limit[, bound]

A class of psects may have an upper address limit associated with it. The following example places
a limit on the maximum address of the CODE class of psects to one less than 400h.

-SCODE=400h

Note that to set an upper limit to a psect, this must be set in assembler code (with a 1imit= flag on
a PSECT directive).

If the bound (boundary) argument is used, the class of psects will start on a multiple of the bound
address. This example places the FARCODE class of psects at a multiple of 1000h, but with an upper
address limit of 6000h:

—-SFARCODE=6000h, 1000h

5.7.24 -Usymbol

This option will enter the specified symbol into the linker’s symbol table. The symbol may either be
defined or undefined.
Symbols may be defined to be equal to another symbol or a numerical value, e.g.

196

Linker and Utilities Invoking the Linker

-U_myUndefinedSymbol
-U_myDefinedSymbol=0x55
-U_equatedSymbol=_foobar

5.7.25 -Vavmap

To produce an Avocet format symbol file, the linker needs to be given a map file to allow it to
map psect names to Avocet memory identifiers. The avmap file will normally be supplied with the
compiler, or created automatically by the compiler driver as required.

5.726 -Wnum

The - option can be used to set the warning level, in the range -9 to 9, or the width of the map file,
for values of num >= 10.

-W9 will suppress all warning messages. -W0 is the default. Setting the warning level to -9 (-W-9)
will give the most comprehensive warning messages.

5.727 X

Local symbols can be suppressed from a symbol file with this option. G1lobal symbols will always
appear in the symbol file.

5.7.28 -Z

Some local symbols are compiler generated and not of interest in debugging. This option will
suppress from the symbol file all local symbols that have the form of a single alphabetic character,
followed by a digit string. The set of letters that can start a trivial symbol is currently "k1fLSu".
The -z option will strip any local symbols starting with one of these letters, and followed by a digit
string.

5.8 Invoking the Linker

The linker is called HLINK, and normally resides in the BIN subdirectory of the compiler installation
directory. It may be invoked with no arguments, in which case it will prompt for input from standard
input. If the standard input is a file, no prompts will be printed. This manner of invocation is
generally useful if the number of arguments to HLINK is large. Even if the list of files is too long
to fit on one line, continuation lines may be included by leaving a backslash \ at the end of the
preceding line. In this fashion, HLINK commands of almost unlimited length may be issued. For
example a link command file called x . 1nk and containing the following text:

197

Map Files Linker and Utilities

-7 -0X.0BJ -MX.MAP \
-Ptext=0,data=0/,bss,nvram=bss/. \
X.0BJ Y.OBJ Z.0BJ C:\HT-Z80\LIB\Z80-SC.LIB

may be passed to the linker by one of the following:

hlink @x.lnk
hlink < x.lnk

5.9 Map Files

The map file contains information relating to the relocation of psects and the addresses assigned to
symbols within those psects.

5.9.1 Generation

If compilation is being performed via MPLAB IDE, a map file is generated by default without you
having to adjust the compiler options. If you are using the driver from the command line then you’ll
need to use the -M option, see Section 2.6.9.

Map files are produced by the linker. If the compilation process is stopped before the linker is
executed, then no map file is produced. The linker will still produce a map file even if it encounters
errors, which will allow you to use this file to track down the cause of the errors. However, if the
linker ultimately reports too many errors then it did not run to completion, and the map file will
be either not created or not complete. You can use the -—~ERRORS option on the command line, or as
an alternate MPLAB IDE setting, to increase the number of errors before the compiler applications
give up. See Section 2.6.32 for more information on this option.

5.9.2 Contents

The sections in the map file, in order of appearance, are as follows:

e The compiler name and version number;

A copy of the command line used to invoke the linker;

The version number of the object code in the first file linked;

The machine type;

A psect summary sorted by the psect’s parent object file;

198

Linker and Utilities Map Files

A psect summary sorted by the psect’s CLASS;

e A segment summary;

Unused address ranges summary; and

The symbol table

Portions of an example map file, along with explanatory text, are shown in the following sections.

5.9.2.1 General Information

At the top of the map file is general information relating to the execution of the linker.

When analysing a program, always confirm the compiler version number shown in the map file if
you have more than one compiler version installed to ensure the desired compiler is being executed.

The chip selected with the -—CHIP option should appear after the Machine type entry.

The Object code version relates to the file format used by relocatable object files produced by
the assembler. Unless either the assembler or linker have been updated independently, this should
not be of concern.

A typical map file may begin something like the following. This example is valid for the refer-
enced device but might differ to the default options used by another device.

HI-TECH Software PICC-18 Compiler PRO Edition #V9.80
Linker command line:

--edf=C:\Program files\HI-TECH Software\picc-18\9.80\dat\en_msgs.txt \
-cs —h+structret.sym -z -Q18F452 -ol.obj -Mstructret.map \
—-ACODE=00h-03FFFhx2 —-ACONST=00h-07FFFh -ASMALLCONST=0600h-06FFhx122 \
-AMEDIUMCONST=0600h-07FFFh -ACOMRAM=00h-07Fh -AABS1=00h-05FFh \
-ABIGRAM=00h-05FFh -ARAM=080h-0FFh, 0100h-01FFhx5 —-ABANK(0=080h-0FFh
-ABANK1=0100h-01FFh -ABANK2=0200h-02FFh -ABANK3=0300h-03FFh \
-ABANK4=0400h-04FFh -ABANK5=0500h-05FFh -ASFR=0F80h-0FFFh \
-preset_vec=00h, intcode, intcodelo, powerup, init,end_init -pramtop=0600h \
-psmallconst=SMALLCONST -pmediumconst=MEDIUMCONST -pconst=CONST \
-AFARRAM=00h-00h -ACONFIG=0300000h-030000Dh -pconfig=CONFIG \
-AIDLOC=0200000h-0200007h -pidloc=IDLOC -AEEDATA=0F00000h-0F000FFh \
-peeprom_data=EEDATA \

-prdata=COMRAM, nvrram=COMRAM, nvbit=COMRAM, rbss=COMRAM, rbit=COMRAM \
-pfarbss=FARRAM, fardata=FARRAM \

-pintsave_regs=BIGRAM, bigbss=BIGRAM, bigdata=BIGRAM -pbss=RAM \

199

Map Files Linker and Utilities

-pidata=CODE, irdata=CODE, ibigdata=CODE, ifardata=CODE startup.obj main.ob]j
Object code version is 3.10
Machine type is 18F452

The Linker command line shown is the entire list of options and files that were passed to the linker
for the build recorded by this map file. Remember, these are linker options and not command-line
driver options. The linker options are necessarily complex. Fortunately, they rarely need adjusting
from their default settings. They are formed by the command-line driver, PICC18, based on the
selected target device and the specified driver options. You can often confirm that driver options
were valid by looking at the linker options in the map file. For example, if you ask the driver to
reserve an area of memory, you should see a change in the linker options used.

If the default linker options must be changed, this can be done indirectly through the driver using
the driver -L- option, see Section 2.6.8. If you use this option, always confirm the change appears
correctly in the map file.

5.9.2.2 Psect Information listed by Module

The next section in the map file lists those modules that made a contribution to the output, and
information regarding the psects these modules defined.
This section is heralded by the line that contains the headings:

Name Link Load Length Selector Space Scale

Under this on the far left is a list of object files. These object files include both files generated
from source modules and those that were extracted from object library files. In the case of those
from library files, the name of the library file is printed before the object file list.Note that since the
code generator combines all C source files (and p-code libraries), there will only be one object file
representing the entire C part of the program. The object file corresponding to the runtime startup
code is normally present in this list.

The information in this section of the map file can be used to confirm that a module is making a
contribution to the output file and to determine the exact psects that each module defines.

Shown are all the psects (under the Name column) that were linked into the program from each
object file, and information regarding that psect.

The linker deals with two kinds of addresses: link and load. Generally speaking the link address
of a psect is the address by which it will be accessed at run time.

The load address, which is often the same as the link address, is the address at which the psect
will start within the output file (HEX or binary file etc.). If a psect is used to hold bits, the load

200

Linker and Utilities Map Files

address is irrelevant and is instead used to hold the link address (in bit units) converted into a byte
address.

The Length of the psect is shown (in units suitable for that psect).

The Selector is less commonly used and is of no concern when compiling for PIC18 devices.

The Space field is important as it indicates the memory space in which the psect was placed.
For Harvard architecture machines, with separate memory spaces (such as PIC18 devices), this field
must be used in conjunction with the address to specify an exact storage location. A space of 0
indicates the program memory, and a space of 1 indicates the data memory. See 4.3.10.3.

The Scale of a psect indicates the number of address units per byte — this is left blank if the
scale is 1 — and typically this will show 8 for psects that hold bit objects. The Load address of
psects that hold bits is used to display the link address converted into units of bytes, rather than the
load address.

TUTORIAL

INTERPRETING THE PSECT LIST The following appears in a map file.

Name Link Load Length Selector Space Scale

ext.obj text 3A 3A 22 30 0
bss 4B 4B 10 4B 1
rbit 50 A 2 0 1 8

This indicates that one of the files that the linker processed was called ext .obj. (This
may have been derived from ext . c or ext .as.) This object file contained a text psect,
as well as psects called bss and rbit. The psect text was linked at address 3A and
bss at address 4B. At first glance, this seems to be a problem given that text is 22 words
long, however note that they are in different memory areas, as indicated by the Space
flag (0 for text and 1 for bss), and so do not occupy the same memory. The psect
rbit contains bit objects, as indicated by its Scale value (its name is a bit of a giveaway
too). Again, at first glance there seems there could be an issue with rbit linked over
the top of bss. Their Space flags are the same, but since rbit contains bit objects, all
the addresses shown are bit addresses, as indicated by the Scale value of 8. Note that
the Load address field of rbit psect displays the Link address converted to byte units,
i.e. 50h/8 => Ah.

5.9.2.3 Psect Information listed by Class

The next section in the map file is the same psect information listed by module, but this time grouped
into the psects’ class.
This section is heralded by the line that contains the headings:

201

Map Files Linker and Utilities

TOTAL Name Link Load Length

Under this are the class names followed by those psects which belong to this class, see 4.3.10.3.
These psects are the same as those listed by module in the above section; there is no new information
contained in this section.

5.9.2.4 Segment Listing

The class listing in the map file is followed by a listing of segments. A segment is conceptual
grouping of contiguous psects, and are used by the linker as an aid in psect placement. There is no
segment assembler directive and segments cannot be controlled in any way.

This section is heralded by the line that contains the headings:

SEGMENTS Name Load Length Top Selector Space Class

The name of a segment is derived from the psect in the contiguous group with the lowest link address.
This can lead to confusion with the psect with the same name. Do not read psect information from
this section of the map file.

Typically this section of the map file can be ignored by the user.

5.9.2.5 Unused Address Ranges

The last of the memory summaries Just before the symbol table in the map file is a list of memory

which was not allocated by the linker. This memory is thus unused. The linker is aware of any

memory allocated by the code generator (for absolute variables), and so this free space is accurate.
This section follows the heading:

UNUSED ADDRESS RANGES

and is followed by a list of classes and the memory still available in each class. If there is more than
one range in a class, each range is printed on a separate line. Any paging boundaries within a class
are ignored and are not displayed, but the column Largest block shows the largest contiguous free
space which takes into account any paging in the memory range. If you are looking to see why psects
cannot be placed into memory (e.g. cant-find-space type errors) then this important information to
study.

Note that the memory associated with a class can overlap that in others, thus the total free space
is not simply the addition of all the unused ranges.

202

Linker and Utilities Map Files

5.9.2.6 Symbol Table

The final section in the map file list global symbols that the program defines. This section has a
heading:

Symbol Table

and is followed by two columns in which the symbols are alphabetically listed. As always with the
linker, any C derived symbol is shown with its assembler equivalent symbol name. The symbols
listed in this table are:

e Global assembly labels;
e Global EQU/SET assembler directive labels; and

e Linker-defined symbols.

Assembly symbols are made global via the GLOBAL assembler directive, see Section 4.3.10.1 for
more information. linker-defined symbols act like EQU directives, however they are defined by the
linker during the link process, and no definition for them will appear in any source or intermediate
file.

Non-static C functions, and non-auto and non-static C variables directly map to assembly
labels. The name of the label will be the C identifier with a leading underscore character. The
linker-defined symbols include symbols used to mark the bounds of psects. See Section 3.12.3. The
symbols used to mark the base address of each functions’ auto and parameter block are also shown.
Although these symbols are used to represent the local autos and parameters of a function, they
themselves must be globally accessible to allow each calling function to load their contents. The
C auto and parameter variable identifiers are local symbols that only have scope in the function in
which they are defined.

Each symbol is shown with the psect in which they are placed, and the address which the symbol
has been assigned. There is no information encoded into a symbol to indicate whether it represents
code or variables, nor in which memory space it resides.

If the psect of a symbol is shown as (abs), this implies that the symbol is not directly associated
with a psect as is the case with absolute C variables. Linker-defined symbols showing this as the
psect name may be symbols that have never been used throughout the program, or relate to symbols
that are not directly associated with a psect.

Note that a symbol table is also shown in each assembler list file. (See Section 2.6.19 for in-
formation on generating these files.) These differ to that shown in the map file in that they list
all symbols, whether they be of global or local scope, and they only list the symbols used in the
module(s) associated with that list file.

203

Librarian Linker and Utilities

5.10 Librarian

The librarian program, LIBR, has the function of combining several object files into a single file
known as a library. The purposes of combining several such object modules are several.

o fewer files to link
e faster access

e uses less disk space

In order to make the library concept useful, it is necessary for the linker to treat modules in a library
differently from object files. If an object file is specified to the linker, it will be linked into the final
linked module. A module in a library, however, will only be linked in if it defines one or more
symbols previously known, but not defined, to the linker. Thus modules in a library will be linked
only if required. Since the choice of modules to link is made on the first pass of the linker, and
the library is searched in a linear fashion, it is possible to order the modules in a library to produce
special effects when linking. More will be said about this later.

5.10.1 The Library Format

The modules in a library are basically just concatenated, but at the beginning of a library is main-
tained a directory of the modules and symbols in the library. Since this directory is smaller than the
sum of the modules, the linker can perform faster searches since it need read only the directory, and
not all the modules, on the first pass. On the second pass it need read only those modules which are
required, seeking over the others. This all minimises disk I/O when linking.

It should be noted that the library format is geared exclusively toward object modules, and is not
a general purpose archiving mechanism as is used by some other compiler systems. This has the
advantage that the format may be optimized toward speeding up the linkage process.

5.10.2 Using the Librarian

The librarian program is called LIBR, and the format of commands to it is as follows:
LIBR options k file.lib file.obj ...

Interpreting this, LIBR is the name of the program, opt ions is zero or more librarian options which
affect the output of the program. k is a key letter denoting the function requested of the librarian
(replacing, extracting or deleting modules, listing modules or symbols), file.11ib is the name of
the library file to be operated on, and file. objis zero or more object file names.

The librarian options are listed in Table 5.2.

204

Linker and Utilities Librarian

Table 5.2: Librarian command-line options

Option Effect
-Pwidth | specify page width
-W Suppress non-fatal errors

Table 5.3: Librarian key letter commands
Key Meaning

Replace modules

Delete modules

Extract modules

List modules

List modules with symbols
Re-order modules

o|ln|B|IxX|alr

The key letters are listed in Table 5.3.

When replacing or extracting modules, the £ile. ob jarguments are the names of the modules
to be replaced or extracted. If no such arguments are supplied, all the modules in the library will be
replaced or extracted respectively. Adding a file to a library is performed by requesting the librarian
to replace it in the library. Since it is not present, the module will be appended to the library. If the
r key is used and the library does not exist, it will be created.

Under the d key letter, the named object files will be deleted from the library. In this instance, it
is an error not to give any object file names.

The m and s key letters will list the named modules and, in the case of the s keyletter, the symbols
defined or referenced within (global symbols only are handled by the librarian). As with the r and x
key letters, an empty list of modules means all the modules in the library.

The o key takes a list of module names and re-orders the matching modules in the library file so
they have the same order as that listed on the command line. Modules which are not listed are left
in their existing order, and will appear after the re-ordered modules.

5.10.3 Examples

Here are some examples of usage of the librarian. The following lists the global symbols in the
modules a.obj, b.objand c.obj:

LIBR s file.lib a.obj b.obj c.obj

This command deletes the object modules a.obj, b.obj and c.obj from the library file.lib:

205

Librarian Linker and Utilities

LIBR d file.lib a.obj b.obj c.obj

5.10.4 Supplying Arguments

Since it is often necessary to supply many object file arguments to LIBR, and command lines are
restricted to 127 characters by CP/M and MS-DOS, LIBR will accept commands from standard input
if no command line arguments are given. If the standard input is attached to the console, LIBR will
prompt for input. Multiple line input may be given by using a backslash as a continuation character
on the end of a line. If standard input is redirected from a file, LIBR will take input from the file,
without prompting. For example:

libr
libr> r file.lib 1l.obj 2.0bj 3.0bj \
libr> 4.0bj 5.0bj 6.0bJ

will perform much the same as if the object files had been typed on the command line. The libr>
prompts were printed by LIBR itself, the remainder of the text was typed as input.

libr <lib.cmd

LIBR will read input from 1ib.cmd, and execute the command found therein. This allows a virtually
unlimited length command to be given to LIBR.

5.10.5 Listing Format

A request to LIBR to list module names will simply produce a list of names, one per line, on standard
output. The s keyletter will produce the same, with a list of symbols after each module name. Each
symbol will be preceded by the letter D or U, representing a definition or reference to the symbol
respectively. The -P option may be used to determine the width of the paper for this operation. For
example:

LIBR -P80 s file.lib

will list all modules in file.lib with their global symbols, with the output formatted for an 80
column printer or display.

5.10.6 Ordering of Libraries

The librarian creates libraries with the modules in the order in which they were given on the com-
mand line. When updating a library the order of the modules is preserved. Any new modules added
to a library after it has been created will be appended to the end.

206

Linker and Utilities Objtohex

The ordering of the modules in a library is significant to the linker. If a library contains a module
which references a symbol defined in another module in the same library, the module defining the
symbol should come after the module referencing the symbol.

5.10.7 Error Messages

LIBR issues various error messages, most of which represent a fatal error, while some represent a
harmless occurrence which will nonetheless be reported unless the - option was used. In this case
all warning messages will be suppressed.

5.11 Objtohex

The HI-TECH linker is capable of producing simple binary files, or object files as output. Any other
format required must be produced by running the utility program OBJTOHEX. This allows conversion
of object files as produced by the linker into a variety of different formats, including various hex
formats. The program is invoked thus:

OBJTOHEX options inputfile outputfile

All of the arguments are optional. If output £ile is omitted it defaults to 1.hex or 1.bin depend-
ing on whether the -b option is used. The input file defaultsto 1.obj.

The options for OBJTOHEX are listed in Table 5.4. Where an address is required, the format is the
same as for HLINK.

5.11.1 Checksum Specifications

If you are generating a HEX file output, please refer to the hexmate section 5.14 for calculating
checksums. For OBJTOHEX, the checksum specification allows automated checksum calculation and
takes the form of several lines, each line describing one checksum. The syntax of a checksum line
is:

addrl-addr2 wherel-where2 +offset

All of addri, addr2, wherel, where2 and of fset are hex numbers, without the usual H suffix.
Such a specification says that the bytes at addr1 through to addr2 inclusive should be summed
and the sum placed in the locations wherel through where2 inclusive. For an 8 bit checksum
these two addresses should be the same. For a checksum stored low byte first, wherel should be less
than where2, and vice versa. The +offset is optional, but if supplied, the value offset will be used
to initialise the checksum. Otherwise it is initialised to zero. For example:

207

Objtohex Linker and Utilities

Table 5.4: OBJTOHEX command-line options

Option Meaning

-8 Produce a CP/M-86 output file

-A Produce an ATDOS . atx output file

-Bbase Produce a binary file with offset of base. Default file name is
1.0bj

-Cckfile | Readalistof checksum specifications from ck i 1e or standard
input

-D Produce a COD file

-E Produce an MS-DOS . exe file

-Ffill Fill unused memory with words of value £111 - default value is
OFFh

-I Produce an Intel HEX file with linear addressed extended
records.

-L Pass relocation information into the output file (used with .exe
files)

-M Produce a Motorola HEX file (519, S28 or S37 format)

-N Produce an output file for Minix

-Pstk Produce an output file for an Atari ST, with optional stack size

-R Include relocation information in the output file

-Sfile Write a symbol file into file

-T Produce a Tektronix HEX file.

-TE Produce an extended TekHEX file.

-U Produce a COFF output file

-UB Produce a UBROF format file

-V Reverse the order of words and long words in the output file

-n,m Format either Motorola or Intel HEX file, where n is the maxi-
mum number of bytes per record and m specifies the record size
rounding. Non-rounded records are zero padded to a multiple of
m. m itself must be a multiple of 2.

208

Linker and Utilities Cref

Table 5.5: CREF command-line options
Option Meaning
-Fprefix Exclude symbols from files with a pathname or
filename starting with prefix
-Hheading Specify a heading for the listing file

-Llen Specify the page length for the listing file

-Ooutfile Specify the name of the listing file

-Pwidth Set the listing width

-Sstoplist | Read file stoplist and ignore any symbols
listed.

-Xprefix Exclude and symbols starting with prefix

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The 16 bit
checksum will be placed in locations 3 and 4, low byte in 3. The checksum is initialised with 1FFFH
to provide protection against an all zero ROM, or a ROM misplaced in memory. A run time check of
this checksum would add the last address of the ROM being checksummed into the checksum. For
the ROM in question, this should be 1FFFH. The initialization value may, however, be used in any
desired fashion.

5.12 Cref

The cross reference list utility CREF is used to format raw cross-reference information produced by
the compiler or the assembler into a sorted listing. A raw cross-reference file is produced with the
—-—-CR option to the compiler. The assembler will generate a raw cross-reference file with a -C option
(most assemblers) or by using an OPT CRE directive (6800 series assemblers) or a XREF control line
(PIC assembler). The general form of the CREF command is:

cref options files

where options is zero or more options as described below and files is one or more raw cross-
reference files. CREF takes the options listed in Table 5.5.
Each option is described in more detail in the following paragraphs.

5.12.1 -Fprefix

It is often desired to exclude from the cross-reference listing any symbols defined in a system header
file, e.g. <stdio.h>. The -F option allows specification of a path name prefix that will be used to

209

Cref Linker and Utilities

exclude any symbols defined in a file whose path name begins with that prefix. For example, -F\
will exclude any symbols from all files with a path name starting with \.

5.12.2 -Hheading

The -H option takes a string as an argument which will be used as a header in the listing. The default
heading is the name of the first raw cross-ref information file specified.

5.12.3 -Llen

Specify the length of the paper on which the listing is to be produced, e.g. if the listing is to be
printed on 55 line paper you would use a -L55 option. The default is 66 lines.

5.12.4 -Ooutfile

Allows specification of the output file name. By default the listing will be written to the standard
output and may be redirected in the usual manner. Alternatively out £iIe may be specified as the
output file name.

5.12.5 -Pwidth

This option allows the specification of the width to which the listing is to be formatted, e.g. -P132
will format the listing for a 132 column printer. The default is 80 columns.

5.12.6 -Sstoplist

The -5 option should have as its argument the name of a file containing a list of symbols not to be
listed in the cross-reference. Multiple stoplists may be supplied with multiple -S options.

5.12.7 -Xprefix

The -X option allows the exclusion of symbols from the listing, based on a prefix given as argument
to —X. For example if it was desired to exclude all symbols starting with the character sequence xyz
then the option -Xxyz would be used. If a digit appears in the character sequence then this will match
any digit in the symbol, e.g. -XX0 would exclude any symbols starting with the letter X followed by
a digit.

CREF will accept wildcard filenames and I/O redirection. Long command lines may be supplied
by invoking CREF with no arguments and typing the command line in response to the cref> prompt.
A backslash at the end of the line will be interpreted to mean that more command lines follow.

210

Linker and Utilities Cromwell

Table 5.6: CROMWELL format types

Key Format
cod Bytecraft COD file
coff COFF file format
elf ELF/DWAREF file

eomf51 | Extended OMF-51 format
hitech | HI-TECH Software format
icoff ICOFF file format

ihex Intel HEX file format
mcoff Microchip COFF file format
omf51 OMF-51 file format

pe P&E file format

s19 Motorola HEX file format

5.13 Cromwell

The CROMWELL utility converts code and symbol files into different formats. The formats available
are shown in Table 5.6.
The general form of the CROMWELL command is:

CROMWELL options input_files —-okey output_file

where options can be any of the options shown in Table 5.7. Output_file (optional) is the
name of the output file. The input_files are typically the HEX and SYM file. CROMWELL
automatically searches for the SDB files and reads those if they are found. The options are further
described in the following paragraphs.

5.13.1 -Pname[,architecture]

The -P options takes a string which is the name of the processor used. CROMWELL may use this in the
generation of the output format selected. Note that to produce output in COFF format an additional
argument to this option which also specifies the processor architecture is required. Hence for this
format the usage of this option must take the form: -Pname, architecture. Table 5.8 enumerates
the architectures supported for producing COFF files.

5.13.2 -N

To produce some output file formats (e.g. COFF), Cromwell requires that the names of the program
memory space psect classes be provided. The names of the classes are given as a comma separated

211

Cromwell

Linker and Utilities

212

Table 5.7: CROMWELL command-line options

Option

Description

-Pname[,architecture]

Processor name and architecture

-N Identify code classes

-D Dump input file

-C Identify input files only

-F Fake local symbols as global
-Okey Set the output format
-lkey Set the input format

-L List the available formats

-E Strip file extensions

-B Specify big-endian byte ordering
-M Strip underscore character
-V Verbose mode

Table 5.8: -P option architecture arguments for COFF file output.

Architecture Description

68K Motorola 68000 series chips

H&/300 Hitachi 8 bit H8/300 chips

H8/300H Hitachi 16 bit H8/300H chips

SH Hitachi 32 bit SuperH RISC chips
PIC12 Microchip base-line PIC chips

PIC14 Microchip mid-range PIC chips

PIC16 Microchip high-end (17Cxxx) PIC chips
PIC18 Microchip PIC18 chips

PIC24 Microchip PIC24F and PIC24H chips
PIC30 Microchip dsPIC30 and dsPIC33 chips

Linker and Utilities Cromwell

list. For example, in the DSPIC C compiler these classes are typically “CODE” and “NEARCODE”,
i.e. -NCODE, NEARCODE.

5133 -D

The -D option is used to display to the screen details about the named input file in a readable format.
The input file can be one of the file types as shown in Table 5.6.

5134 -C

This option will attempt to identify if the specified input files are one of the formats as shown in
Table 5.6. If the file is recognised, a confirmation of its type will be displayed.

5135 -F

When generating a COD file, this option can be used to force all local symbols to be represented as
global symbols. The may be useful where an emulator cannot read local symbol information from
the COD file.

5.13.6 -Okey

This option specifies the format of the output file. The key can be any of the types listed in Table
5.6.

5.13.7 -Ikey

This option can be used to specify the default input file format. The key can be any of the types
listed in Table 5.6.

5.13.8 -L

Use this option to show what file format types are supported. A list similar to that given in Table 5.6
will be shown.

5139 -E

Use this option to tell CROMWELL to ignore any filename extensions that were given. The default
extension will be used instead.

213

Hexmate Linker and Utilities

5.13.10 -B

In formats that support different endian types, use this option to specify big-endian byte ordering.

51311 -M

When generating COD files this option will remove the preceding underscore character from sym-
bols.

51312 -V

Turns on verbose mode which will display information about operations CROMWELL is performing.

5.14 Hexmate

The Hexmate utility is a program designed to manipulate Intel HEX files. Hexmate is a post-link
stage utility that provides the facility to:

e Calculate and store variable-length checksum values

e Fill unused memory locations with known data sequences

e Merge multiple Intel hex files into one output file

e Convert INHX32 files to other INHX formats (e.g. INHX8M)
e Detect specific or partial opcode sequences within a hex file

e Find/replace specific or partial opcode sequences

e Provide a map of addresses used in a hex file

e Change or fix the length of data records in a hex file.

e Validate checksums within Intel hex files.
Typical applications for hexmate might include:

e Merging a bootloader or debug module into a main application at build time

e Calculating a checksum over a range of program memory and storing its value in program
memory or EEPROM

214

Linker and Utilities Hexmate

e Filling unused memory locations with an instruction to send the PC to a known location if it
gets lost.

e Storage of a serial number at a fixed address.

e Storage of a string (e.g. time stamp) at a fixed address.

e Store initial values at a particular memory address (e.g. initialise EEPROM)
e Detecting usage of a buggy/restricted instruction

e Adjusting hex file to meet requirements of particular bootloaders

5.14.1 Hexmate Command Line Options

Some of these hexmate operations may be possible from the compiler’s command line driver. How-
ever, if hexmate is to be run directly, its usage is:

hexmate <filel.hex ... fileN.hex> <options>

Where filel.hex through to fileN.hex are a list of input Intel hex files to merge using hexmate. Ad-
ditional options can be provided to further customize this process. Table 5.9 lists the command line
options that hexmate accepts.

The input parameters to hexmate are now discussed in greater detail. Note that any integral
values supplied to the hexmate options should be entered as hexadecimal values without leading 0x
or trailing h characters. Note also that any address fields specified in these options are to be entered
as byte addresses, unless specified otherwise in the ~ADDRESSING option.

5.14.1.1 specifications,filename.hex

Intel hex files that can be processed by hexmate should be in either INHX32 or INHX8M format.
Additional specifications can be applied to each hex file to put restrictions or conditions on how this
file should be processed. If any specifications are used they must precede the filename. The list of
specifications will then be separated from the filename by a comma.

A range restriction can be applied with the specification r Start-End. A range restriction will
cause only the address data falling within this range to be used. For example:

r100-1FF, myfile.hex

will use myfile.hex as input, but only process data which is addressed within the range 100h-1FFh
(inclusive) to be read from myfile.hex.

An address shift can be applied with the specification sOf fset . If an address shift is used, data
read from this hex file will be shifted (by the Offset) to a new address when generating the output.
The offset can be either positive or negative. For example:

215

Hexmate Linker and Utilities
Table 5.9: Hexmate command-line options
Option Effect

~ADDRESSING Set address fields in all hexmate options to use word addressing
or other

-BREAK Break continuous data so that a new record begins at a set
address

-CK Calculate and store a checksum value

~-FILL Program unused locations with a known value

-FIND Search and notify if a particular code sequence is detected

216

-FIND...,DELETE

Remove the code sequence if it is detected (use with caution)

-FIND...,REPLACE

Replace the code sequence with a new code sequence

-FORMAT Specify maximum data record length or select INHX variant

-HELP Show all options or display help message for specific option

-LOGFILE Save hexmate analysis of output and various results to a file

-0file Specify the name of the output file

-SERIAL Store a serial number or code sequence at a fixed address

-SIZE Report the number of bytes of data contained in the resultant
hex image.

-STRING Store an ASCII string at a fixed address

—-STRPACK Store an ASCII string at a fixed address using string packing

-W Adjust warning sensitivity

+ Prefix to any option to overwrite other data in its address range

if necessary

Linker and Utilities Hexmate

r100-1FFs2000,myfile.hex

will shift the block of data from 100h-1FFh to the new address range 2100h-21FFh.
Be careful when shifting sections of executable code. Program code shouldn’t be shifted unless it
can be guaranteed that no part of the program relies upon the absolute location of this code segment.

5.14.1.2 + Prefix

When the + operator precedes a parameter or input file, the data obtained from that parameter will
be forced into the output file and will overwrite other data existing within its address range. For
example:

t+input.hex +-STRINGE1000="My string"

Ordinarily, hexmate will issue an error if two sources try to store differing data at the same location.
Using the + operator informs hexmate that if more than one data source tries to store data to the same
address, the one specified with a ’+’ will take priority.

5.14.1.3 -ADDRESSING

By default, all address parameters in hexmate options expect that values will be entered as byte
addresses. In some device architectures the native addressing format may be something other than
byte addressing. In these cases it would be much simpler to be able to enter address-components
in the device’s native format. To facilitate this, the ~ADDRESSING option is used. This option takes
exactly one parameter which configures the number of bytes contained per address location. If for
example a device’s program memory naturally used a 16-bit (2 byte) word-addressing format, the
option ~ADDRESSING=2 will configure hexmate to interpret all command line address fields as word
addresses. The affect of this setting is global and all hexmate options will now interpret addresses
according to this setting. This option will allow specification of addressing modes from one byte-
per-address to four bytes-per-address.

5.14.14 -BREAK

This option takes a comma separated list of addresses. If any of these addresses are encountered
in the hex file, the current data record will conclude and a new data record will recommence from
the nominated address. This can be useful to use new data records to force a distinction between
functionally different areas of program space. Some hex file readers depend on this.

217

Hexmate Linker and Utilities

514.1.5 -CK

The -CK option is for calculating a checksum. The usage of this option is:
-CK=start-end@destination|[+toffset] [wWidth] [tCode] [gAlgorithm]
where:

e Start and End specify the address range that the checksum will be calculated over.

e Destination is the address where to store the checksum result. This value cannot be within the
range of calculation.

e Offset is an optional initial value to add to the checksum result. Width is optional and specifies
the byte-width of the checksum result. Results can be calculated for byte-widths of 1 to 4
bytes. If a positive width is requested, the result will be stored in big-endian byte order. A
negative width will cause the result to be stored in little-endian byte order. If the width is left
unspecified, the result will be 2 bytes wide and stored in little-endian byte order.

e Code is a hexadecimal code that will trail each byte in the checksum result. This can allow
each byte of the checksum result to be embedded within an instruction.

e Algorithm is an integer to select which hexmate algorithm to use to calculate the checksum
result. A list of selectable algorithms are given in Table 5.10. If unspecified, the default
checksum algorithm used is 8 bit addition.

A typical example of the use of the checksum option is:

-CK=0-1FFFE2FFE+2100w2

This will calculate a checksum over the range 0-1FFFh and program the checksum result at address
2FFEh, checksum value will apply an initial offset of 2100h. The result will be two bytes wide.

5.14.1.6 -FILL

The -FILL option is used for filling unused memory locations with a known value. The usage of this
option is:

-fill=[const_width:]fill_expr[@address|[:end_address]]

where:

218

Linker and Utilities Hexmate

Table 5.10: Hexmate Checksum Algorithm Selection
Selector | Algorithm description

-4 Subtraction of 32 bit values from initial value
-3 Subtraction of 24 bit values from initial value
-2 Subtraction of 16 bit values from initial value
-1 Subtraction of 8 bit values from initial value

1 Addition of 8 bit values from initial value
2 Addition of 16 bit values from initial value
3 Addition of 24 bit values from initial value
4

7

8

Addition of 32 bit values from initial value
Fletcher’s checksum (8 bit)
Fletcher’s checksum (16 bit)

e const_width has the form wn and signifies the width (n bytes) of each constantin fil11l_expr.
If const_width is not specified, the default value is the native width of the architecture. i.e.
--fill=wl:1 with fill every byte with the value 0x01.

o fill_expr can use the syntax (where const and increment are n-byte constants):

— const fill memory with a repeating constant i.e. ——f111=0xBEEF becomes OxBEEF,
0xBEEF, 0xBEEF, 0xBEEF

— const+=increment fill memory with an incrementing constanti.e. ——fi11=0xBEEF+=1
becomes 0xBEEF, 0xBEFO0, OxBEF1, OxBEF2

— const-=increment fill memory with a decrementing constant
i.e. ——£111=0xBEEF-=0x10 becomes O0xBEEF, OxBEDF, 0xBECF, OxBEBF

- const, const, ..., const fill memory with a list of repeating constants
i.e. ——£111=0xDEAD, 0xBEEF becomes 0OxDEAD,0xBEEF,0xDEAD,0xBEEF

e The options following £111_expr result in the following behaviour:

— (@unused (or nothing) fill all unused memory with fill_expri.e. ——£fi11=0xBEEF@unused
fills all unused memory with OxBEEF. (This option can only be used with the PICC18
command-line option —-FILL, see 2.6.33. The driver will expand this to the appropriate
ranges and pass these to HEXMATE.)

— Qaddressfill a specific address with fill_expri.e. -——f111=0xBEEF@0x1000 puts OXBEEF
at address 1000h

219

Hexmate Linker and Utilities

— Raddress:end_address fill arange of memory with fill_expr i.e.
--£111=0xBEEF@0: 0xFF puts OxBEEF in unused addresses between 0 and 255

All constants can be expressed in (unsigned) binary, octal, decimal or hexadecimal, as per normal C
syntax, so for example 1234 is a decimal value, 0OxFF0O0 is hexadecimal and FFOO is illegal.

5.14.1.7 -FIND

This option is used to detect and log occurrences of an opcode or partial code sequence. The usage
of this option is:

-FIND=Findcode[mMask]@Start-End|[/Align] [w][t”Title”]
where:

e Findcode is the hexadecimal code sequence to search for and is entered in little endian byte
order.

e Mask is optional. It allows a bit mask over the Findcode value and is entered in little endian
byte order.

e Start and End limit the address range to search through.

e Align is optional. It specifies that a code sequence can only match if it begins on an address
which is a multiple of this value. w, if present will cause hexmate to issue a warning whenever
the code sequence is detected.

o Title is optional. It allows a title to be given to this code sequence. Defining a title will make
log-reports and messages more descriptive and more readable. A title will not affect the actual
search results.

TUTORIAL

Let’s look at some examples. The option ~-FIND=3412@0-7FFF/2w will detect the code
sequence 1234h when aligned on a 2 (two) byte address boundary, between 0h and
7TFFFh. w indicates that a warning will be issued each time this sequence is found.
Another example, ~-FIND=3412M0F00Q0-7FFF/2wt"ADDXY" is same as last example
but the code sequence being matched is masked with 000Fh, so hexmate will search for
123xh. If a byte-mask is used, is must be of equal byte-width to the opcode it is applied
to. Any messaging or reports generated by hexmate will refer to this opcode by the
name, ADDXY as this was the title defined for this search.

220

Linker and Utilities Hexmate

If hexmate is generating a log file, it will contain the results of all searches. -FIND accepts whole
bytes of hex data from 1 to 8 bytes in length. Optionally, ~-FIND can be used in conjunction with
, REPLACE or ,DELETE (as described below).

5.14.1.8 -FIND...DELETE

If DELETE is used in conjunction with a -FIND option and a sequence is found that matches the
-FIND criteria, it will be removed. This function should be used with extreme caution and is not
recommended for removal of executable code.

5.14.1.9 -FIND...,REPLACE

REPLACE Can only be used in conjunction with a -FIND option. Code sequences that matched the
-FIND criteria can be replaced or partially replaced with new codes. The usage for this sub-option
is:

-FIND...,REPLACE=Code[mMask]
where:

e Code is a little endian hexadecimal code to replace the sequences that match the -FIND crite-
ria.

e Mask is an optional bit mask to specify which bits within Code will replace the code sequence
that has been matched. This may be useful if, for example, it is only necessary to modify 4
bits within a 16-bit instruction. The remaining 12 bits can masked and be left unchanged.

5.14.1.10 -FORMAT

The -FORMAT option can be used to specify a particular variant of INHX format or adjust maximum
record length. The usage of this option is:

-FORMAT=Type|[, Length]
where:

e Type specifies a particular INHX format to generate.

e Length is optional and sets the maximum number of bytes per data record. A valid length is
between 1 and 128, with 16 being the default.

221

Hexmate Linker and Utilities

Table 5.11: INHX types used in -FORMAT option
Type Description
INHX8M | Cannot program addresses beyond 64K.
INHX32 Can program addresses beyond 64K with extended linear address records.
INHX032 | INHX32 with initialization of upper address to zero.

TUTORIAL

Consider this case. A bootloader trying to download an INHX32 file fails because it
cannot process the extended address records which are part of the INHX32 standard.
You know that this bootloader can only program data addressed within the range 0 to
64k, and that any data in the hex file outside of this range can be safely disregarded. In
this case, by generating the hex file in INHX8M format the operation might succeed.
The hexmate option to do this would be ~-FORMAT=INHX8M.

Now consider this. What if the same bootloader also required every data record to
contain eight bytes of data, no more, no less? This is possible by combining ~-FORMAT
with ~-FILL. Appropriate use of ~-FILL can ensure that there are no gaps in the data
for the address range being programmed. This will satisfy the minimum data length
requirement. To set the maximum length of data records to eight bytes, just modify the
previous option to become ~-FORMAT=INHX8M, 8.

The possible types that are supported by this option are listed in Table 5.11. Note that INHX032 is
not an actual INHX format. Selection of this type generates an INHX32 file but will also initialize
the upper address information to zero. This is a requirement of some device programmers.

5.14.1.11 -HELP

Using -HELP will list all hexmate options. By entering another hexmate option as a parameter of
-HELP will show a detailed help message for the given option. For example:

-HELP=string

will show additional help for the ~STRING hexmate option.

5.14.1.12 -LOGFILE

The -LOGFILE option saves hex file statistics to the named file. For example:

-LOGFILE=output.log

222

Linker and Utilities Hexmate

will analyse the hex file that hexmate is generating and save a report to a file named output.log.

5.14.1.13 -MASK

Use this option to logically AND a memory range with a particular bitmask. This is used to ensure
that the unimplemented bits in program words (if any) are left blank. The usage of this option is as
follows:

-MASK=hexcodel@start-end

Where hexcode is a hexadecimal value that will be ANDed with data within the start-end
address range. Multibyte mask values can be entered in little endian byte order.

5.14.1.14 -Ofile

The generated Intel hex output will be created in this file. For example:
-Oprogram.hex

will save the resultant output to program.hex. The output file can take the same name as one of its
input files, but by doing so, it will replace the input file entirely.

5.14.1.15 -SERIAL

This option will store a particular hex value at a fixed address. The usage of this option is:
-SERIAL=Code[+/-Increment]@Address([+/-Interval] [rRepetitions]
where:

e Code is a hexadecimal value to store and is entered in little endian byte order.

e [ncrement is optional and allows the value of Code to change by this value with each repetition
(if requested).

e Address is the location to store this code, or the first repetition thereof.
e [nterval is optional and specifies the address shift per repetition of this code.

® Repetitions is optional and specifies the number of times to repeat this code.

For example:

223

Hexmate Linker and Utilities

—-SERIAL=000001QEFFE

will store hex code 00001h to address EFFEh.
Another example:

—-SERIAL=0000+2@1000+410x5

will store 5 codes, beginning with value 0000 at address 1000h. Subsequent codes will appear at
address intervals of +10h and the code value will change in increments of +2h.

5.14.1.16 -SIZE

Using the -SIZE option will report the number of bytes of data within the resultant hex image to
standard output. The size will also be recorded in the log file if one has been requested.

5.14.1.17 -STRING

The -STRING option will embed an ASCII string at a fixed address. The usage of this option is:
-STRINGEAddress[tCodel]="Text"”

where:

e Addpress is the location to store this string.

e Code is optional and allows a byte sequence to trail each byte in the string. This can allow the
bytes of the string to be encoded within an instruction.

o Text is the string to convert to ASCII and embed.
For example:
-STRINGE1000="My favourite string"
will store the ASCII data for the string, My favourite string (including null terminator) at ad-
dress 1000h.
Another example:

-STRING@1000t34="My favourite string"

will store the same string with every byte in the string being trailed with the hex code 34h.

224

Linker and Utilities Hexmate

5.14.1.18 -STRPACK

This option performs the same function as -STRING but with two important differences. Firstly, only
the lower seven bits from each character are stored. Pairs of 7 bit characters are then concatenated
and stored as a 14 bit word rather than in separate bytes. This is usually only useful for devices where
program space is addressed as 14 bit words. The second difference is that -STRING’s t specifier is
not applicable with -STRPACK.

225

Hexmate Linker and Utilities

226

Appendix A

Library Functions

The functions within the standard compiler library are listed in this chapter. Each entry begins with
the name of the function. This is followed by information decomposed into the following categories.

Synopsis the C declaration of the function, and the header file in which it is declared.
Description a narrative description of the function and its purpose.

Example an example of the use of the function. It is usually a complete small program that illus-
trates the function.

Data types any special data types (structures etc.) defined for use with the function. These data
types will be defined in the header file named under Synopsis.

See also any allied functions.

Return value the type and nature of the return value of the function, if any. Information on error
returns is also included

Only those categories which are relevant to each function are used.

227

Library Functions

__CONFIG
Synopsis

#include <htc.h>

_ CONFIG(n, data)

Description

This macro is used to program the configuration fuses that set the device into various modes of
operation.

The macro accepts the number corresponding to the configuration register it is to program, then
the 16-Bit value it is to update it with.

16-Bit masks have been defined to describe each programmable attribute available on each de-
vice. These attribute masks can be found tabulated in this manual in the Features and Runtime
Environment section.

Multiple attributes can be selected by ANDing them together.

Example
#include <htc.h>
_ CONFIG(1,RC & OSCEN)

__CONFIG(2,WDTPS16 & BORV4S)
__CONFIG(4, DEBUGEN)

void

main (void)
{

}

See also

_ EEPROM_DATA(), __IDLOC()

228

Library Functions

__EEPROM_DATA
Synopsis

#include <htc.h>

_ EEPROM_DATA(a,b,c,d,e, f,q9,h)

Description
This macro is used to store initial values into the device’s EEPROM registers at the time of program-
ming.

The macro must be given blocks of 8 bytes to write each time it is called, and can be called
repeatedly to store multiple blocks.

__EEPROM_DATA() will begin writing to EEPROM address zero, and will auto-increment the
address written to by 8, each time it is used.

Example
#include <htc.h>

_ EEPROM_DATA (0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07)
_ EEPROM_DATA (0x08,0x09,0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F)

void

main (void)
{

}

See also

__CONFIG()

229

Library Functions

__IDLOC
Synopsis

#include <htc.h>

__IDLOC (x)

Description

This macro places data into the device’s special locations outside of addressable memory reserved
for ID. This would be useful for storage of serial numbers etc.
The macro will attempt to write 5 nibbles of data to the 5 locations reserved for ID purposes.

Example
#include <htc.h>

_ _IDLOC(15F01);
/* will store 1, 5, F, 0 and 1 in the ID registers*/

void

main (void)
{

}

See also

__EEPROM_DATA(), __ CONFIG()

230

Library Functions

_DELAY()
Synopsis

#include <htc.h>

void _delay(unsigned long cycles);

Description

This is an inline function that is expanded by the code generator. When called, this routine expands
to an inline assembly delay sequence. The sequence will consist of code that delays for the number
of cycles that is specified as argument. The argument must be a literal constant.

Example
#include <htc.h>
void
main (void)

{

control |= 0x80;
_delay(10); // delay for 10 cycles
control &= 0x7F;

See Also
_delay3()

231

Library Functions

_DELAY3()
Synopsis

#include <htc.h>

void _delay3 (unsigned char cycles);

Description

This is an inline function that is expanded by the code generator. When called, this routine expands
to an inline assembly delay sequence. The sequence will consist of code that delays for 3 times the
number of cycles that is specified as argument. The argument can be any expression.

Example
#include <htc.h>
void

main (void)

{
control |= 0x80;
_delay3(10); // delay for 30 cycles
control &= 0x7F;

See Also
_delay()

232

Library Functions

ABS
Synopsis
#include <stdlib.h>

int abs (int j)

Description

The abs() function returns the absolute value of j.

Example

#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

int a = -5;

printf ("The absolute value of %d is %d\n", a, abs(a));

See Also
labs(), fabs()

Return Value

The absolute value of j.

233

Library Functions

ACOS
Synopsis

#include <math.h>

double acos (double f)

Description

The acos() function implements the inverse of cos(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose cosine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

/* Print acos() values for -1 to 1 in degrees. */

void
main (void)
{

float i, a;
for(i = -1.0; 1 < 1.0 ; 1 +=0.1) {

a = acos(1)*180.0/3.141592;
printf ("acos (%f) = %f degrees\n", i, a);

See Also

sin(), cos(), tan(), asin(), atan(), atan2()

Return Value

An angle in radians, in the range O to 7

234

Library Functions

ASCTIME

Synopsis

#include <time.h>

char * asctime (struct tm * t)

Description

The asctime() function takes the time broken down into the struct tm structure, pointed to by its
argument, and returns a 26 character string describing the current date and time in the format:

Sun Sep 16 01:03:52 1973\n\0

Note the newline at the end of the string. The width of each field in the string is fixed. The
example gets the current time, converts it to a struct tm pointer with localtime(), it then converts
this to ASCII and prints it. The time() function will need to be provided by the user (see time() for
details).

Example

#include <stdio.h>
#include <time.h>

void

main (void)

{
time_t clock;
struct tm * tp;

time (&clock);

tp = localtime (&clock);
printf ("$s", asctime(tp));

See Also

ctime(), gmtime(), localtime(), time()

235

Library Functions

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as it cannot be supplied with the
compiler.. See time() for more details.

236

Library Functions

ASIN
Synopsis

#include <math.h>

double asin (double f)

Description

The asin() function implements the converse of sin(), i.e. it is passed a value in the range -1 to +1,
and returns an angle in radians whose sine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

float i, aj;
for(i = -1.0; 1 < 1.0 ; 1 +=0.1) {

a = asin(1i)*180.0/3.141592;
printf ("asin(%f) = %f degrees\n", i, a);

See Also

sin(), cos(), tan(), acos(), atan(), atan2()

Return Value

An angle in radians, in the range - 7

237

Library Functions

ASSERT
Synopsis

#include <assert.h>

void assert (int e)

Description

This macro is used for debugging purposes; the basic method of usage is to place assertions liberally

throughout your code at points where correct operation of the code depends upon certain conditions

being true initially. An assert() routine may be used to ensure at run time that an assumption holds

true. For example, the following statement asserts that the pointer tp is not equal to NULL:
assert(tp);

If at run time the expression evaluates to false, the program will abort with a message identifying
the source file and line number of the assertion, and the expression used as an argument to it. A fuller
discussion of the uses of assert() is impossible in limited space, but it is closely linked to methods
of proving program correctness.

Example

void
ptrfunc (struct xyz * tp)

{
assert (tp !'= 0);

Note

When required for ROM based systems, the underlying routine _fassert(...) will need to be imple-
mented by the user.

238

Library Functions

ATAN
Synopsis

#include <math.h>

double atan (double x)

Description

This function returns the arc tangent of its argument, i.e. it returns an angle e in the range -

Example

#include <stdio.h>
#include <math.h>

void
main (void)

{
printf ("$f\n", atan(l.5));

See Also

sin(), cos(), tan(), asin(), acos(), atan2()

Return Value

The arc tangent of its argument.

239

Library Functions

ATAN2
Synopsis

#include <math.h>

double atan2 (double x, double x)

Description

This function returns the arc tangent of y/x.

Example

#include <stdio.h>
#include <math.h>

void
main (void)

{
printf ("$£f\n", atan2(10.0, -10.0));

See Also

sin(), cos(), tan(), asin(), acos(), atan()

Return Value

The arc tangent of y/x.

240

Library Functions

ATOF
Synopsis

#include <stdlib.h>

double atof (const char * s)

Description

The atof() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a number to a double. The number may be in decimal, normal floating
point or scientific notation.

Example
#include <stdlib.h>

#include <stdio.h>

void

main (void)

{
char buf[80];
double i;

gets (buf);

i = atof (buf);
printf ("Read %s: converted to %$f\n", buf, i);

See Also

atoi(), atol(), strtod()

Return Value

A double precision floating point number. If no number is found in the string, 0.0 will be returned.

241

Library Functions

ATOI
Synopsis

#include <stdlib.h>

int atoi (const char * s)

Description

The atoi() function scans the character string passed to it, skipping leading blanks and reading an
optional sign. It then converts an ASCII representation of a decimal number to an integer.

Example
#include <stdlib.h>

#include <stdio.h>

void
main (void)

{
char buf[80];
int i;
gets (buf) ;

i = atoi (buf);
printf ("Read %s: converted to %d\n", buf, i);

See Also

xtoi(), atof(), atol()

Return Value

A signed integer. If no number is found in the string, O will be returned.

242

Library Functions

ATOL
Synopsis

#include <stdlib.h>

long atol (const char * s)

Description

The atol() function scans the character string passed to it, skipping leading blanks. It then converts
an ASCII representation of a decimal number to a long integer.

Example
#include <stdlib.h>

#include <stdio.h>

void

main (void)

{
char buf[80];
long 1i;

gets (buf);

i = atol (buf);
printf ("Read %s: converted to %$1d\n", buf, 1i);

See Also

atoi(), atof()

Return Value

A long integer. If no number is found in the string, O will be returned.

243

Library Functions

BSEARCH

Synopsis

#include <stdlib.h>

void * bsearch (const void * key, void * base, size_t n_memb,
size_t size, int (*compar) (const void *, const void *))

Description

The bsearch() function searches a sorted array for an element matching a particular key. It uses a
binary search algorithm, calling the function pointed to by compar to compare elements in the array.

Example

244

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

struct value {
char name[40];
int value;

} values[100];

int
val_cmp (const void * pl, const void * p2)
{
return strcmp(((const struct value *)pl)->name,
((const struct value *)p2)->name);

void

main (void)

{
char inbuf[80];
int i;
struct value * vp;

Library Functions

i=20;
while (gets (inbuf)) {
sscanf (inbuf, "%s %d", values[i].name, &values[i].value);
i++;
}
gsort (values, i, sizeof values[0], val_cmp);
vp = bsearch("fred", values, i, sizeof values[0], val_cmp);
if (lvp)
printf ("Item ’fred’ was not found\n");
else
printf ("Item ’fred’ has value %d\n", vp->value);

See Also
gsort()

Return Value

A pointer to the matched array element (if there is more than one matching element, any of these
may be returned). If no match is found, a null pointer is returned.

Note

The comparison function must have the correct prototype.

245

Library Functions

CEIL
Synopsis

#include <math.h>

double ceil (double f)

Description

This routine returns the smallest whole number not less than f.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
double 7j;

scanf ("%1f", &73);
printf ("The ceiling of %1f is %$1f\n", j, ceil(j));

246

Library Functions

CGETS

Synopsis

#include <conio.h>

char * cgets (char * s)

Description

The cgets() function will read one line of input from the console into the buffer passed as an ar-
gument. It does so by repeated calls to getche(). As characters are read, they are buffered, with
backspace deleting the previously typed character, and ctrl-U deleting the entire line typed so far.
Other characters are placed in the buffer, with a carriage return or line feed (newline) terminating
the function. The collected string is null terminated.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{
for(;;) |
cgets (buffer);
if (strcmp (buffer, "exit") == 0)
break;
cputs ("Type ’'exit’ to finish\n");

See Also

getch(), getche(), putch(), cputs()

247

Library Functions

Return Value

The return value is the character pointer passed as the sole argument.

248

Library Functions

CLRWDT
Synopsis
#include <htc.h>

CLRWDT () ;

Description

This macro is used to clear the device’s internal watchdog timer.

Example
#include <htc.h>
void
main (void)
{

WDTCON=1;
/* enable the WDT */

CLRWDT () ;

249

Library Functions

CONFIG_READ(), CONFIG_WRITE()

Synopsis

#include <htc.h>
unsigned int config_read(void);

void config_write (unsigned char, unsigned int);

Description

These functions allow access to the device configuration registers which determine many of the
behavioural aspects of the device itself.

config_read() accepts a single parameter to determine which config word will be read. The 16-Bit
value contained in the register is returned.

config_write() doesn’t return any value. It accepts a second parameter which is a 16-Bit value to
be written to the selected register.

Example
#include <htc.h>
void
main (void)

{

unsigned int value;
value = config_read(2); // read register 2

value |= WDTEN; // modify value
config_write (2, value); // update config register

See Also

device_id_read(),idloc_read(),idloc_write()

250

Library Functions

Return Value

config_read() returns the 16-Bit value contained in the nominated configuration register.

Note

The functions config_read() config_write() are only applicable to such devices that support this
feature.

251

Library Functions

COS
Synopsis

#include <math.h>

double cos (double f)

Description

This function yields the cosine of its argument, which is an angle in radians. The cosine is calculated
by expansion of a polynomial series approximation.
Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0
void
main (void)
{
double i;

for(i =0 ; 1 <= 180.0 ; 1 += 10)
printf ("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

See Also

sin(), tan(), asin(), acos(), atan(), atan2()

Return Value

A double in the range -1 to +1.

252

Library Functions

COSH, SINH, TANH
Synopsis

#include <math.h>

double cosh (double f)
double sinh (double f)
double tanh (double f)

Description

These functions are the implement hyperbolic equivalents of the trigonometric functions; cos(), sin()
and tan().

Example

#include <stdio.h>
#include <math.h>

void

main (void)

{
printf ("$f\n", cosh(1.5));
printf ("$f\n", sinh(1.5));
printf ("$f\n", tanh(1.5));

Return Value

The function cosh() returns the hyperbolic cosine value.
The function sinh() returns the hyperbolic sine value.
The function tanh() returns the hyperbolic tangent value.

253

Library Functions

CPUTS
Synopsis

#include <conio.h>

void cputs (const char * s)

Description

The cputs() function writes its argument string to the console, outputting carriage returns before
each newline in the string. It calls putch() repeatedly. On a hosted system cputs() differs from puts()
in that it writes to the console directly, rather than using file I/O. In an embedded system cputs() and
puts() are equivalent.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void

main (void)

{

for(;;) {
cgets (buffer);
if (strcmp (buffer, "exit") == 0)
break;

cputs ("Type ’exit’ to finish\n");

See Also
cputs(), puts(), putch()

254

Library Functions

CTIME
Synopsis

#include <time.h>

char * ctime (time_t * t)

Description

The ctime() function converts the time in seconds pointed to by its argument to a string of the same
form as described for asctime(). Thus the example program prints the current time and date.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time (&clock);
printf ("$s", ctime(&clock));

See Also

gmtime(), localtime(), asctime(), time()

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

255

Library Functions

device_id_read()

Synopsis

#include <htc.h>

unsigned int device_id_read(void);

Description

This function returns the device ID code that is factory-programmed into the chip. This code can be
used to identify the device and its revision number.

Example

#include <htc.h>

void

main (void)

{
unsigned int id_value;
unsigned int device_code;
unsigned char revision_no;

id_value = device_id_read();

/* lower 5 bits represent revision number

* upper 11 bits identify device */
device_code = (id_value >> 5);
revision_no = (unsigned char) (id_value & 0x1F);

See Also

flash_read(), config_read()

256

Library Functions

Return Value

device_id_read() returns the 16-Bit factory-programmed device id code used to identify the device
type and its revision number.

Note

The device_id_read() is applicable only to those devices which are capable of reading their own
program memory.

257

Library Functions

DI, EI
Synopsis

#include <htc.h>

void ei (void)
void di (void)

Description

The di() macro disables all interrupts globally (regardless of priority settings), ei() re-enables inter-
rupts globally. These are implemented as macros defined in PIC18.h. The example shows the use
of ei() and di() around access to a long variable that is modified during an interrupt. If this was not

done, it would be possible to return an incorrect value, if the interrupt occurred between accesses to
successive words of the count value.

Example

#include <htc.h>
long count;

void
interrupt tick (void)
{

count++;

long
getticks (void)
{

long val; /* Disable interrupts around access
to count, to ensure consistency.*/

di();

val = count;

ei();

return val;

258

Library Functions

Note

As these macros act on the global interrupt enable bit of the PIC18 processor, ei() will only restore
those interrupt sources that were previously enabled.

259

Library Functions

DIV
Synopsis

#include <stdlib.h>

div_t div (int numer, int demon)

Description

The div() function computes the quotient and remainder of the numerator divided by the denomina-
tor.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{

div_t x;
x = div (12345, 66);

printf ("quotient = %d, remainder = %d\n", x.quot, x.rem);

See Also
udiv(), 1div(), uldiv()

Return Value

Returns the quotient and remainder into the div_t structure.

260

Library Functions

EEPROM_READ, EEPROM_WRITE

Synopsis

#include <htc.h>

unsigned char eeprom _read (unsigned int address);
void eeprom_write (unsigned int address, unsigned char value);

Description

These functions allow access to the on-chip eeprom (when present). The eeprom is not in the
directly-accessible memory space and a special byte sequence is loaded to the eeprom control regis-
ters to access this memory. Writing a value to the eeprom is a slow process and the eeprom_write()
function polls the appropriate registers to ensure that any previous writes have completed before
writing the next datum.

Reading data is completed in the one cycle and no polling is necessary to check for a read
completion.

Example

#include <htc.h>
void

main (void)

{

unsigned char data;
unsigned int address = 0x0010;

data=eeprom_read (address) ;
eeprom_write (address, data);

See Also

flash_erase, flash_read, flash_write

261

Library Functions

Note

The high and low priority interrupt are disabled during sensitive sequences required to access EEP-
ROM. Interrupts are restored after the sequence has completed. eeprom_write() will clear the EEIF
hardware flag before returning.

Both eeprom_read() and eeprom_write() are available in a similar macro form. The essential
difference between the macro and function implementations is that EEPROM_READ (), the macro,
does not test nor wait for any prior write operations to complete.

262

Library Functions

EVAL_POLY
Synopsis

#include <math.h>

double eval_poly (double x, const double * d, int n)

Description

The eval_poly() function evaluates a polynomial, whose coefficients are contained in the array d, at
x, for example:

y = x*x*d2 + x*dl + dO.

The order of the polynomial is passed in n.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
double x, y;

double d[3] = {1.1, 3.5, 2.7};
X = 2.2;
y = eval_poly(x, d, 2);

printf ("The polynomial evaluated at %f is $f\n", x, y);

Return Value

A double value, being the polynomial evaluated at x.

263

Library Functions

EXP
Synopsis

#include <math.h>

double exp (double f)

Description

The exp() routine returns the exponential function of its argument, i.e. e to the power of f.

Example
#include <math.h>

#include <stdio.h>

void
main (void)

{
double f;

for(f = 0.0 ; £<=5,; f +=1.0)
printf("e to %1.0f = %f\n", f, exp(f));

See Also
log(). log10(), pow()

264

Library Functions

FABS
Synopsis

#include <math.h>

double fabs (double f)

Description

This routine returns the absolute value of its double argument.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
printf ("$f %$f\n", fabs(1.5), fabs(-1.5));

See Also
abs(), labs()

265

Library Functions

FLASH Routines
Synopsis

#include <plib.h>

void EraseFlash(unsigned long startaddr, unsigned long endaddr);

void ReadFlash(unsigned long startaddr, unsigned int num _bytes,
unsigned char *flash_array);

void WriteBytesFlash (unsigned long startaddr, unsigned int num_bytes,
unsigned char *flash_array);

void WriteWordFlash (unsigned long startaddr, unsigned int data);

void WriteBlockFlash (unsigned long startaddr, unsigned char num_blocks,
unsigned char *flash_array);

Description

Flash routines are no long supported in the standard C libraries. Use the flash routines provided by
the peripheral libraries whose prototypes are shown above. These are descibed in Section 3.2.7 or in
the peripheral library documentation.

266

Library Functions

FMOD
Synopsis

#include <math.h>

double fmod (double x, double vy)

Description

The function fmod returns the remainder of x/y as a floating point quantity.

Example
#include <math.h>
void
main (void)

{

double rem, x;

x = 12.34;
rem = fmod(x, 2.1);

Return Value

The floating-point remainder of x/y.

267

Library Functions

FLOOR
Synopsis

#include <math.h>

double floor (double f)

Description

This routine returns the largest whole number not greater than f.

Example

#include <stdio.h>
#include <math.h>

void

main (void)

{
printf ("$f\n", floor(1.5));
printf ("$f\n", floor(-1.5));

268

Library Functions

FREXP
Synopsis

#include <math.h>

double frexp (double f, int * p)

Description

The frexp() function breaks a floating point number into a normalized fraction and an integral power
of 2. The integer is stored into the int object pointed to by p. Its return value X is in the interval (0.5,
1.0) or zero, and f equals x times 2 raised to the power stored in *p. If f is zero, both parts of the
result are zero.

Example
#include <math.h>

#include <stdio.h>

void

main (void)

{
double f;
int 1i;

f = frexp(23456.34, &i);
printf("23456.34 = $f * 2°%d\n", £, 1i);

See Also
Idexp()

269

Library Functions

GETCH, GETCHE
Synopsis

#include <conio.h>

char getch (void)
char getche (void)

Description

The getch() function reads a single character from the console keyboard and returns it without echo-
ing. The getche() function is similar but does echo the character typed.

In an embedded system, the source of characters is defined by the particular routines supplied.
By default, the library contains a version of getch() that will interface to the Lucifer Debugger. The
user should supply an appropriate routine if another source is desired, e.g. a serial port.

The module getch.c in the SOURCES directory contains model versions of all the console I/O
routines. Other modules may also be supplied, e.g. seri/80.c has routines for the serial port in a
Z180.

Example
#include <conio.h>
void

main (void)

{

char c;

while((c = getche()) != "\n’)
continue;

See Also
cgets(), cputs(), ungetch()

270

Library Functions

GETCHAR
Synopsis

#include <stdio.h>

int getchar (void)

Description
The getchar() routine is a getc(stdin) operation. It is a macro defined in stdio.h. Note that under
normal circumstances getchar() will NOT return unless a carriage return has been typed on the
console. To get a single character immediately from the console, use the function getch().
Example

#include <stdio.h>

void

main (void)

{

int c;
while((c = getchar()) != EOF)

putchar (c);

See Also
getc(), fgete(), freopen(), fclose()

Note

This routine is not usable in a ROM based system.

271

Library Functions

GETS
Synopsis

#include <stdio.h>

char * gets (char * s)

Description

The gets() function reads a line from standard input into the buffer at s, deleting the newline (cf.
fgets()). The buffer is null terminated. In an embedded system, gets() is equivalent to cgets(), and
results in getche() being called repeatedly to get characters. Editing (with backspace) is available.

Example
#include <stdio.h>
void

main (void)

{
char buf[80];

printf ("Type a line: ");

if (gets (buf))
puts (buf) ;

See Also
fgets(), freopen(), puts()

Return Value

It returns its argument, or NULL on end-of-file.

272

Library Functions

GMTIME

Synopsis

#include <time.h>

struct tm * gmtime (time_t * t)

Description

This function converts the time pointed to by t which is in seconds since 00:00:00 on Jan 1, 1970,
into a broken down time stored in a structure as defined in time.h. The structure is defined in the
"Data Types’ section.

Example

#include <stdio.h>
#include <time.h>

void

main (void)

{
time_t clock;
struct tm * tp;

time (&clock);

tp = gmtime (&clock);
printf ("It’s %d in London\n", tp->tm_year+1900);

See Also

ctime(), asctime(), time(), localtime()

273

Library Functions

Return Value

Returns a structure of type tm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

274

Library Functions

IDLOC_READ(), IDLOC_WRITE()

Synopsis

#include <htc.h>
unsigned char idloc_read(void);

void idloc_write (unsigned char, unsigned char);

Description

These functions allow access to the user ID register which can be used to store small amounts of
information such as serial numbers, checksums etc.

idloc_read() accepts a single parameter to determine which user ID register to read. The value
contained in the register is returned.

idloc_write() doesn’t return any value. It accepts a second parameter which is a value to be
written to the selected register. Note that only the lower nibble is significant. The upper nibble of
the value written will always be OxF as per Microchip’s documentation.

Example
#include <htc.h>
void

main (void)

{

unsigned char value;
value = idloc_read(2); // read register 2

value++; // modify value
idloc_write (2, value); // update user ID register

See Also

device_id_read(),config_read(),config_write()

275

Library Functions

Return Value

idloc_read() returns the value contained in the nominated user ID register.

Note

The functions idloc_read() idloc_write() are only applicable to such devices that support this fea-
ture.

Note also that ICD2 breakpoints should not be set within the idloc_write() function. Doing so
can result in disrupting the operation of the debugger.

276

Library Functions

ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.
Synopsis

#include <ctype.h>

isalnum(c)
isalpha (c)
isascii (c)
iscntrl (c)
isdigit (c)
islower(c)
isprint (c)
isgraph (c)
ispunct (c)
isspace (c)
isupper (c)

int isalnum (char c)
int isalpha (char c)
int isascii (char c)
int iscntrl (char c)
int isdigit (char c)
int islower (char c)
int isprint (char c)
int isgraph (char c)
int ispunct (char c)
int isspace (char c)
int isupper (char c)
int isxdigit (char c)
Description

isxdigit (c)

These macros, defined in ctype.h, test the supplied character for membership in one of several over-
lapping groups of characters. Note that all except isascii() are defined for ¢, if isascii(c) is true or if
c¢=EOF.

cisin 0-9 or a-z or A-Z
cisin A-Z or a-z

c is a 7 bit ascii character

c is a control character

c is a decimal digit
cisina-z

c is a printing char

¢ is a non-space printable character
¢ is not alphanumeric

c is a space, tab or newline
cisin A-Z

cisin 0-9 or a-f or A-F

277

Library Functions

Example

#include <ctype.h>
#include <stdio.h>

void
main (void)

{
char buf[80];
int i;

gets (buf);
i=20;
while (isalnum(buf[i]))
i++;
buf[i] = 0;
printf ("’ %s’ is the word\n", buf);

See Also

toupper(), tolower(), toascii()

278

Library Functions

ISDIG
Synopsis

#include <ctype.h>

int isdig (int c)

Description

The isdig() function tests the input character c to see if is a decimal digit (0 — 9) and returns true is
this is the case; false otherwise.

Example
#include <ctype.h>
void

main (void)
{
char buf[] = "1998a";
if (isdig(buf[0]))
printf("valid type detected\n");

See Also

isdigit() (listed un isalnum())

Return Value

Zero if the character is a decimal digit; a non-zero value otherwise.

279

Library Functions

ITOA
Synopsis

#include <stdlib.h>

char * itoa (char * buf, int val, int base)

Description

The function itoa converts the contents of val into a string which is stored into buf. The conversion
is performed according to the radix specified in base. buf is assumed to reference a buffer which has
sufficent space allocated to it.

Example
#include <stdlib.h>

#include <stdio.h>

void
main (void)
{
char buf[10];
itoa(buf, 1234, 16);
printf ("The buffer holds %s\n", buf);

See Also

strtol(), utoa(), Itoa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.

280

Library Functions

LABS
Synopsis
#include <stdlib.h>

int labs (long int j)

Description

The labs() function returns the absolute value of long value j.

Example

#include <stdio.h>
#include <stdlib.h>

void
main (void)
{

long int a = -5;

printf ("The absolute value of %1d is %1d\n", a, labs(a));

See Also
abs()

Return Value

The absolute value of j.

281

Library Functions

LDEXP
Synopsis

#include <math.h>

double ldexp (double f, int i)

Description

The ldexp() function performs the inverse of frexp() operation; the integer i is added to the exponent
of the floating point f and the resultant returned.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
double f;

f = ldexp (1.0, 10);
printf("1.0 * 2710 = %f\n", f);

See Also

frexp()

Return Value

The return value is the integer i added to the exponent of the floating point value f.

282

Library Functions

LDIV
Synopsis

#include <stdlib.h>

1div_t 1div (long number, long denom)

Description

The 1div() routine divides the numerator by the denominator, computing the quotient and the remain-
der. The sign of the quotient is the same as that of the mathematical quotient. Its absolute value is
the largest integer which is less than the absolute value of the mathematical quotient.

The 1div() function is similar to the div() function, the difference being that the arguments and
the members of the returned structure are all of type long int.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)

{
ldiv_t 1t;

1t = 1div (1234567, 12345);
printf ("Quotient = %1d, remainder = %1d\n", lt.quot, lt.rem);

See Also
div(), uldiv(), udiv()

Return Value

Returns a structure of type Idiv_t

283

Library Functions

LOCALTIME

Synopsis

#include <time.h>

struct tm * localtime (time_t * t)

Description

The localtime() function converts the time pointed to by t which is in seconds since 00:00:00 on Jan
1, 1970, into a broken down time stored in a structure as defined in time.h. The routine localtime()
takes into account the contents of the global integer time_zone. This should contain the number of
minutes that the local time zone is westward of Greenwich. On systems where it is not possible to
predetermine this value, localtime() will return the same result as gmtime().

Example

#include <stdio.h>
#include <time.h>

char * wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

bi

void

main (void)

{
time_t clock;
struct tm * tp;

time (&clock);

tp = localtime (&clock);
printf ("Today is %$s\n", wday[tp->tm_wday]);

284

Library Functions

See Also

ctime(), asctime(), time()

Return Value

Returns a structure of type tm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

285

Library Functions

LOG, LOG10
Synopsis

#include <math.h>

double log (double f)
double logl0 (double f)

Description

The log() function returns the natural logarithm of f. The function logl10() returns the logarithm to
base 10 of f.

Example

#include <math.h>
#include <stdio.h>

void
main (void)

{

double f;
for(f = 1.0 ; £ <=10.0 ; £ +=1.0)
printf ("log(%1.0f) = %f\n", f, log(f));

See Also
exp(), pow()

Return Value

Zero if the argument is negative.

286

Library Functions

LONGJMP
Synopsis

#include <setjmp.h>

void longjmp (jmp_buf buf, int val)

Description

The longjmp() function, in conjunction with setjmp(), provides a mechanism for non-local goto’s.
To use this facility, setjmp() should be called with a jmp_buf argument in some outer level function.
The call from setjmp() will return 0.

To return to this level of execution, longjmp() may be called with the same jmp_buf argument
from an inner level of execution. Note however that the function which called setjmp() must still be
active when longjmp() is called. Breach of this rule will cause disaster, due to the use of a stack
containing invalid data. The val argument to longjmp() will be the value apparently returned from
the setjmp(). This should normally be non-zero, to distinguish it from the genuine setjmp() call.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{
longjmp (jb, 5);
}

void
main (void)
{

int i;

287

Library Functions

if (1 = setjmp(jb)) {
printf ("setjmp returned %d\n", 1i);
exit (0);

}

printf ("setjmp returned 0 - good\n");

printf("calling inner...\n");

inner();

printf ("inner returned - bad!\n");

See Also

setjmp()

Return Value

The longjmp() routine never returns.

Note

The function which called setjmp() must still be active when longjmp() is called. Breach of this rule
will cause disaster, due to the use of a stack containing invalid data.

288

Library Functions

LTOA
Synopsis

#include <stdlib.h>

char * ltoa (char * buf, long val, int base)

Description

The function Itoa converts the contents of val into a string which is stored into buf. The conversion
is performed according to the radix specified in base. buf is assumed to reference a buffer which has
sufficent space allocated to it.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
char buf[10];
ltoa(buf, 12345678L, 16);
printf ("The buffer holds %s\n", buf);

See Also

strtol(), itoa(), utoa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.

289

Library Functions

MEMCMP

Synopsis

#include <string.h>

int memcmp (const void * sl, const void * s2, size_t n)

Description

The mememp() function compares two blocks of memory, of length n, and returns a signed value
similar to strncmp(). Unlike strncmp() the comparison does not stop on a null character.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{
int buf[10], cow[10], 1i;

buf [0
buf[2
cow [0
cowl[2
buf[l

[1

1 = memcm
if(i < 0)
printf ("less than\n");
else 1if(1 > 0)

printf ("Greater than\n");
else

printf ("Equal\n");

(buf, cow, 3*sizeof(int));

290

Library Functions

See Also

strnepy(), strncmp(), strchr(), memset(), memchr()

Return Value

Returns negative one, zero or one, depending on whether s1 points to string which is less than, equal
to or greater than the string pointed to by s2 in the collating sequence.

291

Library Functions

MEMMOVE
Synopsis
#include <string.h>

void * memmove (void * sl, const void * s2, size_t n)

Description

The memmove() function is similar to the function memcpy() except copying of overlapping blocks
is handled correctly. That is, it will copy forwards or backwards as appropriate to correctly copy one
block to another that overlaps it.

See Also

strnepy(), strncmp(), strchr(), memcepy()

Return Value

The function memmove() returns its first argument.

292

Library Functions

MKTIME

Synopsis

#include <time.h>

time_t mktime (struct tm * tmptr)

Description

The mktime() function converts the local calendar time referenced by the tm structure pointer tmptr
into a time being the number of seconds passed since Jan 15 1970, or -1 if the time cannot be
represented.

Example

#include <time.h>
#include <stdio.h>

void
main (void)
{
struct tm birthday;

birthday.tm_year = 75; // 1975

birthday.tm_mon = 2;

birthday.tm mday = 24;

birthday.tm_hour = birthday.tm_min = birthday.tm_sec = 0;

printf ("you were born approximately %1d seconds after the unix epoch\n",
mktime (&birthday));
}

See Also

ctime(), asctime()

293

Library Functions

Return Value

The time contained in the tm structure represented as the number of seconds since the 1970 Epoch,
or -1 if this time cannot be represented.

294

Library Functions

MODF
Synopsis

#include <math.h>

double modf (double value, double * iptr)

Description

The modf() function splits the argument value into integral and fractional parts, each having the
same sign as value. For example, -3.17 would be split into the integral part (-3) and the fractional
part (-0.17).
The integral part is stored as a double in the object pointed to by iptr.
Example
#include <math.h>

#include <stdio.h>

void
main (void)
{

double i_val, f_val;

f_val = modf(-3.17, &i_val);

Return Value

The signed fractional part of value.

295

Library Functions

NOP
Synopsis

#include <htc.h>

NOP () ;

Description

Execute NOP instruction here. This is often useful to finetune delays or create a handle for break-
points. The NOP instruction is sometimes required during some sensitive sequences in hardware.

Example

#include <htc.h>

void
crude_delay (unsigned char x) {
while (x—-) {
NOP () ;
NOP () ;
NOP ()

/* Do nothing for 3 cycles */

r

296

Library Functions

OS_TSLEEP
Synopsis

#include <task.h>

void os_tsleep(unsigned short tcks)

Description

This routine causes the current task to be removed from the run queue for tcks clock ticks.

Example

#include <task.h>

void
task (void)
{
while (1) {
/* sleep for 100 ticks */
os_tsleep(100);

297

Library Functions

POW
Synopsis

#include <math.h>

double pow (double £, double p)

Description

The pow() function raises its first argument, f, to the power p.

Example

#include <math.h>
#include <stdio.h>

void
main (void)

{
double f;

for(f = 1.0 ; £ <=10.0 ; £ +=1.0)
printf ("pow(2, %1.0f) = %f\n", f, pow(2,

See Also
10g(). log10(), exp()

Return Value

f to the power of p.

298

£));

Library Functions

PRINTF
Synopsis

#include <stdio.h>

unsigned int printf (const char * fmt, ...)

Description

The printf() function is a formatted output routine, operating on stdout. There are corresponding
routines operating into a string buffer (sprintf()). The printf() routine is passed a format string,
followed by a list of zero or more arguments. In the format string are conversion specifications, each
of which is used to print out one of the argument list values. The printf() function performs the text
formatting and calls on the putch() function to actually send the data to the destination.

Each conversion specification is of the form %m.nc where the percent symbol % introduces
a conversion, followed by an optional width specification m. The n specification is an optional
precision specification (introduced by the dot) and ¢ is a letter specifying the type of the conversion.

If the character * is used in place of a decimal constant, e.g. in the format % *d, then one integer
argument will be taken from the list to provide that value. The types of conversion are:

oxXud
Integer conversion - in radices 8, 16, 16, 10 and 10 respectively. The conversion is signed in the case
of d, unsigned otherwise. The precision value is the total number of digits to print, and may be used
to force leading zeroes. E.g. %8.4x will print at least 4 hex digits in an 8 wide field. The letter X
prints out hexadecimal numbers using the upper case letters A-F rather than a-f as would be printed
when using x. When the alternate format is specified, a leading zero will be supplied for the octal
format, and a leading Ox or 0X for the hex format.

s
Print a string - the value argument is assumed to be a character pointer. At most n characters from
the string will be printed, in a field m characters wide.

c
The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. Thus % will produce a
single percent sign.

1
Long integer conversion - Preceding the integer conversion key letter with an 1 indicates that the
argument list is long.

f
Floating point - m is the total width and n is the number of digits after the decimal point. If n is

299

Library Functions

omitted it defaults to 6. If the precision is zero, the decimal point will be omitted unless the alternate
format is specified.

Example

printf ("Total = %4d%", 23)

yields 'Total = 23%'
printf("Size is %1x" , size)

where size is a long, prints size
as hexadecimal.

printf ("Name = %.8s", "al234567890")
yields 'Name = al234567’'

printf ("xx%*d", 3, 4)
yields "xx 4’

/* vprintf example */
#include <stdio.h>

int
error (char * s, ...)

{

va_list ap;

va_start (ap, s);
printf ("Error: ");
vprintf (s, ap);
putchar (“\n’");
va_end(ap) ;

void
main (void)

{

int i;

300

Library Functions

i=3;
error ("testing 1 2 %d", 1i);

See Also

sprintf()

Return Value

The printf() routine returns the number of characters written to stdout.

Note

To use printf(), the putch() function needs to be defined to output one byte of data to the required
destination.

301

Library Functions

PUTCH
Synopsis

#include <conio.h>

void putch (char c)

Description

The putch() function outputs the character ¢ to the console screen, prepending a carriage return if
the character is a newline. In a CP/M or MS-DOS system this will use one of the system I/O calls.
In an embedded system this routine, and associated others, will be defined in a hardware dependent
way. The standard putch() routines in the embedded library interface either to a serial port or to the
Lucifer Debugger.

Example

#include <conio.h>
char * x = "This is a string";

void
main (void)
{

char * cp;
Cp = Xj
while (*x)

putch (*x++) ;
putch(’\n");

See Also
cgets(), cputs(), getch(), getche()

302

Library Functions

PUTCHAR

Synopsis

#include <stdio.h>

int putchar (int c)

Description

The putchar() function is a putc() operation on stdout, defined in stdio.h.

Example
#include <stdio.h>
char * x = "This is a string";
void
main (void)

{

char * cp;
Cp = %y
while (*x)

putchar (*x++) ;
putchar (‘\n");

See Also

putc(), getc(), freopen(), fclose()

Return Value

The character passed as argument, or EOF if an error occurred.

303

Library Functions

Note

This routine is not usable in a ROM based system.

304

Library Functions

PUTS
Synopsis

#include <stdio.h>

int puts (const char * s)

Description
The puts() function writes the string s to the stdout stream, appending a newline. The null character
terminating the string is not copied.
Example
#include <stdio.h>
void
main (void)

{
puts ("Hello, world!");

See Also
fputs(), gets(), freopen(), fclose()

Return Value

EOF is returned on error; zero otherwise.

305

Library Functions

QSORT
Synopsis

#include <stdlib.h>

void gsort (void * base, size_t nel, size_t width,
int (*func) (const void *, const void *))

Description

The gsort() function is an implementation of the quicksort algorithm. It sorts an array of nel items,
each of length width bytes, located contiguously in memory at base. The argument func is a pointer
to a function used by gsort() to compare items. It calls func with pointers to two items to be com-
pared. If the first item is considered to be greater than, equal to or less than the second then func
should return a value greater than zero, equal to zero or less than zero respectively.

Example

#include <stdio.h>
#include <stdlib.h>

int arayl[] = {
567, 23, 456, 1024, 17, 567, 66
i

int
sortem (const void * pl, const void * p2)

{
return *(int *)pl - *(int *)p2;

void
main (void)
{

register int 1i;

306

Library Functions

gsort (aray, sizeof aray/sizeof aray([0],
sizeof aray[0], sortem);

for(i = 0 ; 1 != sizeof aray/sizeof aray([0] ; 1++)
printf ("$d\t", aray[i]);

putchar (‘\n");

Note

The function parameter must be a pointer to a function of type similar to:
int func (const void *, const void *)

i.e. it must accept two const void * parameters, and must be prototyped.

307

Library Functions

RAND
Synopsis

#include <stdlib.h>

int rand (void)

Description

The rand() function is a pseudo-random number generator. It returns an integer in the range 0
to 32767, which changes in a pseudo-random fashion on each call. The algorithm will produce a
deterministic sequence if started from the same point. The starting point is set using the srand() call.
The example shows use of the time() function to generate a different starting point for the sequence
each time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void

main (void)

{
time_t toc;
int 1i;

time (&toc);

srand((int)toc);

for(i =0 ; 1 !'= 10 ; i++)
printf ("$d\t", rand());

putchar (“\n’");

See Also
srand()

308

Library Functions

Note

The example will require the user to provide the time() routine as one cannot be supplied with the
compiler. See time() for more detail.

309

Library Functions

READTIMERx
Synopsis

#include <htc.h>

READTIMERO () ;
READTIMERI () ;
READTIMER3 () ;

Description
The macros READTIMERO(), READTIMER1() and READTIMER3() will return the 16-Bit
value presently held in the device’s corresponding TMRxL and TMRxH register pair. Use of this
macro ensures that the registers are read in the correct order. Timer 2 is an 8-bit timer and does
Example

#include <htc.h>

void

main (void)

{

unsigned int timerlvalue;

timerlvalue = READTIMERI ();

See Also
WRITETIMERXx()

Return Value

An unsigned integer which is the value held in a 16-Bit timer.

310

Library Functions

RESET
Synopsis
#include <htc.h>

RESET () ;

Description

Execute RESET instruction here.

Example

#include <htc.h>

void
test_result (unsigned int error_count) {
if (error_count != 0){

printf (“An error has been detected - Rebooting...\n”);
RESET(); /* Perform software reset */

311

Library Functions

ROUND
Synopsis

#include <math.h>

double round (double x)

Description

The round function round the argument to the nearest integer value, but in floating-point format.
Values midway between integer values are rounded up.

Example
#include <math.h>
void

main (void)

{
double input, rounded;
input = 1234.5678;
rounded = round(input);

See Also

trunc()

312

Library Functions

SCANF, VSCANF
Synopsis

#include <stdio.h>
int scanf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vscanf (const char *, va_list ap)

Description

The scanf() function performs formatted input ("de-editing") from the stdin stream. Similar func-
tions are available for streams in general, and for strings. The function vscanf() is similar, but takes
a pointer to an argument list rather than a series of additional arguments. This pointer should have
been initialised with va_start().

The input conversions are performed according to the fmt string; in general a character in the
format string must match a character in the input; however a space character in the format string will
match zero or more "white space” characters in the input, i.e. spaces, tabs or newlines.

A conversion specification takes the form of the character %, optionally followed by an assign-
ment suppression character (’*”), optionally followed by a numerical maximum field width, followed
by a conversion specification character. Each conversion specification, unless it incorporates the as-
signment suppression character, will assign a value to the variable pointed at by the next argument.
Thus if there are two conversion specifications in the fmt string, there should be two additional
pointer arguments.

The conversion characters are as follows:

oxd
Skip white space, then convert a number in base 8, 16 or 10 radix respectively. If a field width was
supplied, take at most that many characters from the input. A leading minus sign will be recognized.

s
Skip white space, then copy a maximal length sequence of non-white-space characters. The pointer
argument must be a pointer to char. The field width will limit the number of characters copied. The
resultant string will be null terminated.

c
Copy the next character from the input. The pointer argument is assumed to be a pointer to char. If a

313

Library Functions

field width is specified, then copy that many characters. This differs from the s format in that white
space does not terminate the character sequence.

The conversion characters o, X, u, and d may be preceded by an 1 to indicate that the correspond-
ing pointer argument is a pointer to long as appropriate. A preceding h will indicate that the pointer
argument is a pointer to short rather than int.

Example
scanf ("%d %s", &a, &c)
with input " 12s"
will assign 12 to a, and "s" to s.

See Also
fscanf(), sscanf(), printf(), va_arg()

Return Value

The scanf() function returns the number of successful conversions; EOF is returned if end-of-file
was seen before any conversions were performed.

314

Library Functions

SETJMP
Synopsis

#include <setjmp.h>

int setjmp (jmp_buf buf)

Description

The setjmp() function is used with longjmp() for non-local goto’s. See longjmp() for further infor-
mation.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{
longjmp (jb, 5);

void
main (void)
{

int i;

if(i = setjmp(jb)) {
printf ("setjmp returned %d\n", 1i);
exit (0);
}
printf ("setjmp returned 0 - good\n");
printf("calling inner...\n");

315

Library Functions

inner();
printf ("inner returned - bad!\n");

See Also

longjmp()

Return Value

The setjmp() function returns zero after the real call, and non-zero if it apparently returns after a call
to longjmp().

316

Library Functions

SIN
Synopsis

#include <math.h>

double sin (double f)

Description

This function returns the sine function of its argument.

Example
#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{

double i;

for(i =0 ; 1 <= 180.0
printf ("sin(%3.0f)
printf ("cos (%3.0f)

See Also

cos(), tan(), asin(), acos(), atan(), atan2()

Return Value

Sine vale of f.

4

i +=10)

%

%

f\n" ,
f\n" ,

i,
i,

sin (1*C));
cos (1*C));

317

Library Functions

SLEEP
Synopsis

#include <htc.h>

SLEEP () ;

Description

This macro is used to put the device into a low-power standby mode.

Example

#include <htc.h>
extern void init (void);

void
main (void)
{

init(); /* enable peripherals/interrupts */

while (1)
SLEEP(); /* save power while nothing happening */

318

Library Functions

SQRT
Synopsis

#include <math.h>

double sqgrt (double f)

Description

The function sqrt(), implements a square root routine using Newton’s approximation.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{

double 1i;

for(i =0 ; 1 <=20.0; 1 +=1.0)
printf ("square root of %.1f = %$f\n", i, sqrt(i));

See Also

exp()

Return Value

Returns the value of the square root.

Note

A domain error occurs if the argument is negative.

319

Library Functions

SRAND
Synopsis

#include <stdlib.h>

void srand (unsigned int seed)

Description

The srand() function initializes the random number generator accessed by rand() with the given
seed. This provides a mechanism for varying the starting point of the pseudo-random sequence
yielded by rand(). On the Z80, a good place to get a truly random seed is from the refresh register.
Otherwise timing a response from the console will do, or just using the system time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void

main (void)

{
time_t toc;
int i;

time (&toc);

srand((int)toc);

for(i =0 ; 1 != 10 ; i++4)
printf ("$d\t", rand());

putchar (“\n’");

See Also
rand()

320

Library Functions

STRCAT
Synopsis

#include <string.h>

char * strcat (char * sl, const char * s2)

Description

This function appends (concatenates) string s2 to the end of string s1. The result will be null termi-
nated. The argument s1 must point to a character array big enough to hold the resultant string.

Example

#include <string.h>
#include <stdio.h>

void

main (void)

{
char buffer[256];
char * sl, * s2;

strcpy (buffer, "Start of line");

sl = buffer;

s2 =" ... end of line";

strcat (sl, s2);

printf ("Length %d\n", strlen(buffer));
printf ("string = \"%$s\"\n", buffer);

See Also

strepy(), stremp(), strncat(), strlen()

Return Value

The value of s1 is returned.

321

Library Functions

STRCHR, STRICHR

Synopsis

#include <string.h>

char * strchr (const char * s, int c)
char * strichr (const char * s, int c)

Description

The strchr() function searches the string s for an occurrence of the character ¢. If one is found, a
pointer to that character is returned, otherwise NULL is returned.
The strichr() function is the case-insensitive version of this function.

Example

#include <strings.h>
#include <stdio.h>

void
main (void)

{

static char temp[] = "Here it is...";

char ¢ = 's’;

if (strchr (temp, c))
printf ("Character %c was found in string\n", c);

else
printf ("No character was found in string");

See Also

strrchr(), strlen(), stremp()

Return Value

A pointer to the first match found, or NULL if the character does not exist in the string.

322

Library Functions

Note

Although the function takes an integer argument for the character, only the lower 8 bits of the value
are used.

323

Library Functions

STRCMP, STRICMP

Synopsis

#include <string.h>

int strcmp (const char * sl, const char * s2)
int stricmp (const char * sl, const char * s2)

Description

The stremp() function compares its two, null terminated, string arguments and returns a signed
integer to indicate whether s1 is less than, equal to or greater than s2. The comparison is done with
the standard collating sequence, which is that of the ASCII character set.

The stricmp() function is the case-insensitive version of this function.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{

int 1i;

if((1i = strcmp("ABC", "ABc")) < 0)

printf ("ABC is less than ABc\n");
else if(i > 0)

printf ("ABC is greater than ABc\n");
else

printf ("ABC is equal to ABc\n");

See Also

strlen(), strncmp(), strcpy(), strcat()

324

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

325

Library Functions

STRCPY
Synopsis

#include <string.h>

char * strcpy (char * sl, const char * s2)

Description

This function copies a null terminated string s2 to a character array pointed to by s1. The destination
array must be large enough to hold the entire string, including the null terminator.

Example

#include <string.h>
#include <stdio.h>

void

main (void)

{
char buffer[256];
char * sl, * s2;

strcpy (buffer, "Start of line");
sl = buffer;

s2 =" ... end of line";

strcat (sl, s2);
printf ("Length
printf ("string

$d\n", strlen(buffer));
\"$s\"\n", buffer);

See Also

strnepy(), strlen(), strcat(), strlen()

Return Value

The destination buffer pointer s1 is returned.

326

Library Functions

STRCSPN
Synopsis

#include <string.h>

size_t strcspn (const char * sl, const char * s2)

Description

The strespn() function returns the length of the initial segment of the string pointed to by s1 which
consists of characters NOT from the string pointed to by s2.
Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

static char set[] = "xyz";
printf ("$d\n", strcspn("abcdevwxyz", set));

printf ("$d\n", strcspn("xxxbcadefs", set));
printf ("$d\n", strcspn("1234567890", set));

See Also

strspn()

Return Value

Returns the length of the segment.

327

Library Functions

STRLEN
Synopsis

#include <string.h>

size_t strlen (const char * s)

Description

The strlen() function returns the number of characters in the string s, not including the null termina-
tor.

Example

#include <string.h>
#include <stdio.h>

void

main (void)

{
char buffer[256];
char * sl, * s2;

strcpy (buffer, "Start of line");

sl = buffer;

s2 =" ... end of line";

strcat (sl, s2);

printf ("Length %d\n", strlen(buffer));
printf ("string = \"$s\"\n", buffer);

Return Value

The number of characters preceding the null terminator.

328

Library Functions

STRNCAT

Synopsis

#include <string.h>

char * strncat (char * sl, const char * s2, size_t n)

Description

This function appends (concatenates) string s2 to the end of string s1. At most n characters will be
copied, and the result will be null terminated. s1 must point to a character array big enough to hold
the resultant string.

Example

#include <string.h>
#include <stdio.h>

void

main (void)

{
char buffer[256];
char * sl, * s2;

strcpy (buffer, "Start of line");

sl = buffer;

s2 =" ... end of line";

strncat (sl, s2, 5);

printf ("Length = %d\n", strlen(buffer));
printf ("string = \"%$s\"\n", buffer);

See Also

strepy(), stremp(), strcat(), strlen()

329

Library Functions

Return Value

The value of sl is returned.

330

Library Functions

STRNCMP, STRNICMP
Synopsis

#include <string.h>

int strncmp (const char * sl, const char * s2, size_t n)
int strnicmp (const char * sl, const char * s2, size_t n)

Description

The strnemp() function compares its two, null terminated, string arguments, up to a maximum of n
characters, and returns a signed integer to indicate whether s1 is less than, equal to or greater than s2.
The comparison is done with the standard collating sequence, which is that of the ASCII character
set.

The strnicmp() function is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

int i;

i = strncmp ("abcxyz", "abcxyz",6);
if (i == 0)
printf ("Both strings are equall\n");
else if(i > 0)
printf ("String 2 less than string 1\n");
else
printf ("String 2 is greater than string 1\n");

See Also

strlen(), stremp(), strepy(), strcat()

331

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero
or positive, i.e. do not test explicitly for negative one (-1) or one (1).

332

Library Functions

STRNCPY

Synopsis

#include <string.h>

char * strncpy (char * sl,

Description

const char * s2, size_t n)

This function copies a null terminated string s2 to a character array pointed to by s1. At most
n characters are copied. If string s2 is longer than n then the destination string will not be null
terminated. The destination array must be large enough to hold the entire string, including the null

terminator.

Example

#include <string.h>
#include <stdio.h>

void
main

{

(void)

char buffer[256];

char * sl, * s2;

strncpy (buffer,

sl = buffer;
s2 ="
strcat (sl, s2);

printf ("Length =
printf ("string

See Also

"Start of line",

6);

. end of line";

%d\n", strlen(buffer));
\"%$s\"\n", buffer);

strepy(), strcat(), strlen(), stremp()

333

Library Functions

Return Value

The destination buffer pointer s1 is returned.

334

Library Functions

STRPBRK
Synopsis

#include <string.h>

char * strpbrk (const char * sl, const char * s2)

Description
The strpbrk() function returns a pointer to the first occurrence in string s1 of any character from
string s2, or a null pointer if no character from s2 exists in s1.
Example
#include <stdio.h>

#include <string.h>

void
main (void)
{

char * str = "This is a string.";
while(str != NULL) {

printf("%s\n", str);
str = strpbrk(str+l, "aeiou");

Return Value

Pointer to the first matching character, or NULL if no character found.

335

Library Functions

STRRCHR, STRRICHR
Synopsis

#include <string.h>

char * strrchr (char * s, int c)
char * strrichr (char * s, int c)

Description

The strrchr() function is similar to the strchr() function, but searches from the end of the string
rather than the beginning, i.e. it locates the last occurrence of the character ¢ in the null terminated
string s. If successful it returns a pointer to that occurrence, otherwise it returns NULL.

The strrichr() function is the case-insensitive version of this function.

Example
#include <stdio.h>

#include <string.h>

void
main (void)
{

char * str = "This is a string.";
while(str != NULL) {

printf("%s\n", str);
str = strrchr(str+l, ’'s’);

See Also

strchr(), strlen(), strcmp(), strepy(), strcat()

Return Value

A pointer to the character, or NULL if none is found.

336

Library Functions

STRSPN
Synopsis

#include <string.h>

size_t strspn (const char * sl, const char * s2)

Description

The strspn() function returns the length of the initial segment of the string pointed to by s1 which
consists entirely of characters from the string pointed to by s2.

Example

#include <stdio.h>
#include <string.h>

void
main (void)

{
printf ("$d\n", strspn("This is a string", "This"));
printf ("$d\n", strspn("This is a string", "this"));

See Also

strespn()

Return Value

The length of the segment.

337

Library Functions

STRSTR, STRISTR
Synopsis

#include <string.h>

char * strstr (const char * sl, const char * s2)
char * stristr (const char * sl, const char * s2)

Description

The strstr() function locates the first occurrence of the sequence of characters in the string pointed
to by s2 in the string pointed to by s1.
The stristr() routine is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{

printf ("$d\n", strstr("This is a string", "str"));

Return Value

Pointer to the located string or a null pointer if the string was not found.

338

Library Functions

STRTOD

Synopsis

#include <stdlib.h>

double strtok (const char * s, const char ** res)

Description

Parse the string s converting it to a double floating point type. This function converts the first
occurence of a substring of the input that is made up of characters of the expected form after skipping
leading white-space characters. If res is not NULL, it will be made to point to the first character after
the converted sub-string.

Example

#include <stdio.h>
#include <strlib.h>

void

main (void)

{
char buf[] =" 35.7 23.27 ";
char * end;
double inl, in2;

inl = strtod(buf, &end)
in2 strtod(end, NULL);
printf ("in comps: %f, %f\n", inl, in2);

See Also

atof()

339

Library Functions

Return Value

Returns a double representing the floating-point value of the converted input string.

340

Library Functions

STRTOL

Synopsis

#include <stdlib.h>

double strtol (const char * s, const char ** res, int base)

Description

Parse the string s converting it to a long integer type. This function converts the first occurence of
a substring of the input that is made up of characters of the expected form after skipping leading
white-space characters. The radix of the input is determined from base. If this is zero, then the
radix defaults to base 10. If res is not NULL, it will be made to point to the first character after the
converted sub-string.

Example

#include <stdio.h>
#include <strlib.h>

void

main (void)

{
char buf[] = " 0X299 0x792 ";
char * end;
long inl, in2;

inl = strtol (buf, &end, 16);

in2 = strtol (end, NULL, 16);
printf("in (decimal): %1d, %$1d\n", inl, in2);

See Also

strtod()

341

Library Functions

Return Value

Returns a long int representing the value of the converted input string using the specified base.

342

Library Functions

STRTOK

Synopsis

#include <string.h>

char * strtok (char * sl, const char * s2)

Description

A number of calls to strtok() breaks the string s1 (which consists of a sequence of zero or more text
tokens separated by one or more characters from the separator string s2) into its separate tokens.

The first call must have the string s1. This call returns a pointer to the first character of the first
token, or NULL if no tokens were found. The inter-token separator character is overwritten by a null
character, which terminates the current token.

For subsequent calls to strtok(), s1 should be set to a null pointer. These calls start searching
from the end of the last token found, and again return a pointer to the first character of the next token,
or NULL if no further tokens were found.

Example

#include <stdio.h>
#include <string.h>

void

main (void)

{
char * ptr;
char buf[] = "This is a string of words.";
char * sep_tok = ".,?2!' ";

ptr = strtok (buf, sep_tok);
while (ptr != NULL) {

printf ("$s\n", ptr);

ptr = strtok (NULL, sep_tok);

343

Library Functions

Return Value

Returns a pointer to the first character of a token, or a null pointer if no token was found.

Note

The separator string s2 may be different from call to call.

344

Library Functions

TAN
Synopsis

#include <math.h>

double tan (double f)

Description

The tan() function calculates the tangent of f.

Example
#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)

{

double i;

for(i =0 ; 1 <=180.0 ; 1 += 10)

printf ("tan(%3.0f) = $f\n", i, tan(i*C));

See Also

sin(), cos(), asin(), acos(), atan(), atan2()

Return Value

The tangent of f.

345

Library Functions

TIME

Synopsis

#include <time.h>

time_t time (time_t * t)

Description

This function is not provided as it is dependant on the target system supplying the current time. This
function will be user implemented. When implemented, this function should return the current time
in seconds since 00:00:00 on Jan 1, 1970. If the argument t is not equal to NULL, the same value is
stored into the object pointed to by t.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{

time_t clock;

time (&clock);
printf ("%$s", ctime(&clock));

See Also

ctime(), gmtime(), localtime(), asctime()

Return Value

This routine when implemented will return the current time in seconds since 00:00:00 on Jan 1,
1970.

346

Library Functions

Note

The time() routine is not supplied, if required the user will have to implement this routine to the
specifications outlined above.

347

Library Functions

TOLOWER, TOUPPER, TOASCII
Synopsis

#include <ctype.h>

char toupper (int c)
char tolower (int c)
char toascii (int c¢)

Description

The toupper() function converts its lower case alphabetic argument to upper case, the tolower()
routine performs the reverse conversion and the toascii() macro returns a result that is guaranteed
in the range 0-0177. The functions toupper() and tolower() return their arguments if it is not an
alphabetic character.

Example

#include <stdio.h>
#include <ctype.h>
#include <string.h>

void
main (void)

{

char * arrayl = "aBcDE";
int i;

for(i=0;1 < strlen(arrayl); ++i) {
printf ("$c", tolower(arrayl[i]));

}

printf ("\n");

See Also

islower(), isupper(), isascii(), et. al.

348

Library Functions

TRUNC
Synopsis

#include <math.h>

double trunc (double x)

Description

The trunc function rounds the argument to the nearest integer value, in floating-point format, that is
not larger in magniture than the argument.

Example
#include <math.h>
void

main (void)

{
double input, rounded;
input = 1234.5678;
rounded = trunc(input);

See Also

round()

349

Library Functions

UDIV
Synopsis

#include <stdlib.h>

int udiv (unsigned num, unsigned demon)

Description
The udiv() function calculate the quotient and remainder of the division of number and denom,
storing the results into a udiv_t structure which is returned.
Example
#include <stdlib.h>
void
main (void)
{

udiv_t result;
unsigned num = 1234, den = 7;

result = udiv(num, den);

See Also
uldiv(), div(), 1div()

Return Value

Returns the the quotient and remainder as a udiv_t structure.

350

Library Functions

ULDIV
Synopsis

#include <stdlib.h>

int uldiv (unsigned long num, unsigned long demon)

Description
The ualdiv() function calculate the quotient and remainder of the division of number and denom,
storing the results into a uldiv_t structure which is returned.
Example
#include <stdlib.h>
void
main (void)
{

uldiv_t result;
unsigned long num = 1234, den = 7;

result = uldiv(num, den);

See Also
1div(), udiv(), div()

Return Value

Returns the the quotient and remainder as a uldiv_t structure.

351

Library Functions

UNGETCH
Synopsis
#include <conio.h>

void ungetch (char c)

Description

The ungetch() function will push back the character ¢ onto the console stream, such that a subse-
quent getch() operation will return the character. At most one level of push back will be allowed.

See Also

getch(), getche()

352

Library Functions

UTOA
Synopsis

#include <stdlib.h>

char * utoa (char * buf, unsigned val, int base)

Description

The function utoa converts the unsigned contents of val into a string which is stored into buf. The
conversion is performed according to the radix specified in base. buf is assumed to reference a
buffer which has sufficent space allocated to it.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
char buf[10];
utoa (buf, 1234, 16);
printf ("The buffer holds %s\n", buf);

See Also

strtol(), itoa(), 1toa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.

353

Library Functions

VA_START, VA_ARG, VA_END

Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN)

type va_arg (ap, type)
void va_end (va_list ap)

Description

These macros are provided to give access in a portable way to parameters to a function represented in
a prototype by the ellipsis symbol (...), where type and number of arguments supplied to the function
are not known at compile time.

The rightmost parameter to the function (shown as parmN) plays an important role in these
macros, as it is the starting point for access to further parameters. In a function taking variable num-
bers of arguments, a variable of type va_list should be declared, then the macro va_start() invoked
with that variable and the name of parmN. This will initialize the variable to allow subsequent calls
of the macro va_arg() to access successive parameters.

Each call to va_arg() requires two arguments; the variable previously defined and a type name
which is the type that the next parameter is expected to be. Note that any arguments thus accessed
will have been widened by the default conventions to int, unsigned int or double. For example if a
character argument has been passed, it should be accessed by va_arg(ap, int) since the char will
have been widened to int.

An example is given below of a function taking one integer parameter, followed by a number
of other parameters. In this example the function expects the subsequent parameters to be pointers
to char, but note that the compiler is not aware of this, and it is the programmers responsibility to
ensure that correct arguments are supplied.

Example
#include <stdio.h>

#include <stdarg.h>

void
pf (int a, ...)
{

354

Library Functions

va_list ap;

va_start (ap, a);
while (a—--)

puts(va_arg(ap, char *));
va_end(ap);

void
main (void)
{
pf (3, "Line 1", "line 2", "line 3");

355

Library Functions

WRITETIMERXx
Synopsis

#include <htc.h>

WRITETIMERO (unsigned int);
WRITETIMER] (unsigned int);
WRITETIMERS3 (unsigned int);

Description

The WRITETIMERO, WRITETIMER1() and WRITETIMER3() macros will assign a 16-Bit
value to the TMRxL and TMRxH register pair of the corresponding device timer. Using this macro
will ensure that the bytes are written in the correct order.
Example

#include <htc.h>

void

main (void)

{
WRITETIMERI (0xF500);

}

See Also
READTIMERXx()

356

Library Functions

XTOI
Synopsis

#include <stdlib.h>

unsigned xtoi (const char * s)

Description

The xtoi() function scans the character string passed to it, skipping leading blanks reading an optional
sign, and converts an ASCII representation of a hexadecimal number to an integer.

Example
#include <stdlib.h>

#include <stdio.h>

void

main (void)

{
char buf[80];
int i;
gets (buf);

i = xtoi (buf);
printf ("Read %s: converted to %x\n", buf, 1i);

See Also

atoi()

Return Value

An unsigned integer. If no number is found in the string, zero will be returned.

357

Library Functions

358

Appendix B

Error and Warning Messages

This chapter lists most error, warning and advisory messages from all HI-TECH C compilers, with
an explanation of each message. Most messages have been assigned a unique number which appears
in brackets before each message in this chapter, and which is also printed by the compiler when the
message is issued. The messages shown here are sorted by their number. Un-numbered messages
appear toward the end and are sorted alphabetically.

The name of the application(s) that could have produced the messages are listed in brackets
opposite the error message. In some cases examples of code or options that could trigger the error
are given. The use of * in the error message is used to represent a string that the compiler will
substitute that is specific to that particular error.

Note that one problem in your C or assembler source code may trigger more than one error
message. You should attempt to resolve errors or warnings in the order in which they are produced.

(1) too many errors (*) (all applications)

The executing compiler application has encountered too many errors and will exit immediately.
Other uncompiled source files will be processed, but the compiler applications that would normally
be executed in due course will not be run. The number of errors that can be accepted can be con-
trolled using the ——ERRORS option, See Section 2.6.32.

(2) error/warning (*) generated, but no description available (all applications)

The executing compiler application has emitted a message (advisory/warning/error), but there is no
description available in the message description file (MDF) to print. This may be because the MDF
is out of date, or the message issue has not been tranlated into the selected language.

359

Error and Warning Messages

(3) malformed error information on line *, in file * (all applications)

The compiler has attempted to load the messages for the selected language, but the message descrip-
tion file (MDF) was corrupted and could not be read correctly.

(100) unterminated #if[n][def] block from line * (Preprocessor)

A #1if or similar block was not terminated with a matching #endif, e.g.:

#if INPUT /* error flagged here */
void main(void)
{
run();
} /* no #endif was found in this module */

(101) #* may not follow #else (Preprocessor)

A #else or #elif has been used in the same conditional block as a #else. These can only follow a
#if,e.g.:

#ifdef FOO
result = foo;

felse
result = bar;

#elif defined (NEXT) /* the #else above terminated the #if */
result = next (0);

#endif

(102) #* must be in an #if (Preprocessor)

The #elif, #else or #endif directive must be preceded by a matching #if line. If there is an
apparently corresponding #if line, check for things like extra #endif’s, or improperly terminated
comments, €.g.:

#ifdef FOO
result = foo;

fendif
result = bar;

#elif defined (NEXT) /* the #endif above terminated the #if */
result = next (0);

#endif

360

Error and Warning Messages

(103) #error: * (Preprocessor)

This is a programmer generated error; there is a directive causing a deliberate error. This is normally
used to check compile time defines etc. Remove the directive to remove the error, but first check as
to why the directive is there.

(104) preprocessor #assert failure (Preprocessor)

The argument to a preprocessor #assert directive has evaluated to zero. This is a programmer
induced error.

#assert SIZE == /* size should never be 4 */

(105) no #asm before #endasm (Preprocessor)

A #endasm operator has been encountered, but there was no previous matching #asm, e.g.:

void cleardog(void)

{
clrwdt
#endasm /* in-line assembler ends here,
only where did it begin? */

(106) nested #asm directives (Preprocessor)

It is not legal to nest #asm directives. Check for a missing or misspelt #endasm directive, e.g.:

#asm
move r0, #0aah
#asm ; previous #asm must be closed before opening another
sleep
#endasm
(107) illegal # directive '"*" (Preprocessor, Parser)

The compiler does not understand the # directive. It is probably a misspelling of a pre-processor #
directive, e.g.:

#indef DEBUG /* oops -- that should be #undef DEBUG */

361

Error and Warning Messages

(108) #if[n][def] without an argument (Preprocessor)

The preprocessor directives #1if, #ifdef and #ifndef must have an argument. The argument to #1f
should be an expression, while the argument to #ifdef or #ifndef should be a single name, e.g.:

#if /* oops -- no argument to check */
output = 10;
felse
output = 20;
fendif
(109) #include syntax error (Preprocessor)

The syntax of the filename argument to #include is invalid. The argument to #include must be
a valid file name, either enclosed in double quotes "" or angle brackets < >. Spaces should not be
included, and the closing quote or bracket must be present. There should be nothing else on the line
other than comments, e.g.:

#include stdio.h /* oops —-- should be: #include <stdio.h> */

(110) too many file arguments; usage: cpp [input [output]] (Preprocessor)
CPP should be invoked with at most two file arguments. Contact HI-TECH Support if the preproces-
sor is being executed by a compiler driver.

(111) redefining preprocessor macro "*" (Preprocessor)

The macro specified is being redefined, to something different to the original definition. If you want
to deliberately redefine a macro, use #undef first to remove the original definition, e.g.:

#define ONE 1

/* elsewhere: */

/* Is this correct? It will overwrite the first definition. */
#define ONE one

(112) #define syntax error (Preprocessor)

A macro definition has a syntax error. This could be due to a macro or formal parameter name that
does not start with a letter or a missing closing parenthesis ,), e.g.:

#define FOO(a, 2b) Dbar(a, 2b) /* 2b is not to be! */

362

Error and Warning Messages

(113) unterminated string in preprocessor macro body (Preprocessor, Assembler)

A macro definition contains a string that lacks a closing quote.

(114) illegal #undef argument (Preprocessor)

The argument to #undef must be a valid name. It must start with a letter, e.g.:

#undef 6YYY /* this isn’t a valid symbol name */

(115) recursive preprocessor macro definition of ''*'" defined by "'*" (Preprocessor)

The named macro has been defined in such a manner that expanding it causes a recursive expansion
of itself!

(116) end of file within preprocessor macro argument from line * (Preprocessor)

A macro argument has not been terminated. This probably means the closing parenthesis has been
omitted from a macro invocation. The line number given is the line where the macro argument
started, e.g.:

#define FUNC(a, b) func(a+tb)
FUNC (5, 6; /* oops -- where is the closing bracket? */

(117) misplaced constant in #if (Preprocessor)

A constant in a #1f expression should only occur in syntactically correct places. This error is most
probably caused by omission of an operator, e.g.:

#if FOO BAR /* oops -- did you mean: #if FOO == BAR ? */

(118) stack overflow processing #if expression (Preprocessor)

The preprocessor filled up its expression evaluation stack in a #1f expression. Simplify the expres-
sion — it probably contains too many parenthesized subexpressions.

(119) invalid expression in #if line (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

363

Error and Warning Messages

(120) operator "*'" in incorrect context (Preprocessor)

An operator has been encountered in a #if expression that is incorrectly placed, e.g. two binary
operators are not separated by a value, e.g.:

#if FOO * % BAR == /* what is “* %" ? */
#define BIG
fendif
(121) expression stack overflow at operator ''*" (Preprocessor)

Expressions in #1f lines are evaluated using a stack with a size of 128. It is possible for very complex
expressions to overflow this. Simplify the expression.

(122) unbalanced parenthesis at operator ''*"' (Preprocessor)

The evaluation of a #1f expression found mismatched parentheses. Check the expression for correct
parenthesisation, e.g.:

#1if ((A) + (B) /* oops -- a missing), I think */
#define ADDED
#endif

(123) misplaced ""?" or '"":"'; previous operator is "'*'" (Preprocessor)

A colon operator has been encountered in a #if expression that does not match up with a corre-
sponding ? operator, e.g.:

#if XXX : YYY /* did you mean: #if COND ? XXX : YYY */

(124) illegal character "*'" in #if (Preprocessor)

There is a character in a #1f expression that has no business being there. Valid characters are the
letters, digits and those comprising the acceptable operators, e.g.:

#if ‘YYY' /* what are these characters doing here? */
int m;
#endif

364

Error and Warning Messages

(125) illegal character (* decimal) in #if (Preprocessor)

There is a non-printable character in a #1f expression that has no business being there. Valid char-
acters are the letters, digits and those comprising the acceptable operators, e.g.:

#if ~SYYY /* what is this control characters doing here? */
int m;
#endif

(126) strings can’t be used in #if (Preprocessor)

The preprocessor does not allow the use of strings in #if expressions, e.g.:

/* no string operations allowed by the preprocessor */
#1if MESSAGE > “hello”
#define DEBUG
#endif
(127) bad syntax for defined() in #[el]if (Preprocessor)

The defined () pseudo-function in a preprocessor expression requires its argument to be a single
name. The name must start with a letter and should be enclosed in parentheses, e.g.:

/* oops —-- defined expects a name, not an expression */
#if defined(asb)
input = read();
#endif
(128) illegal operator in #if (Preprocessor)

A #1if expression has an illegal operator. Check for correct syntax, e.g.:

#if FOO = 6 /* oops -- should that be: #if FOO == 5 ? */
(129) unexpected '"\" in #if (Preprocessor)
The backslash is incorrect in the #if statement, e.g.:

#if FOO == \34

#define BIG
#endif

365

Error and Warning Messages

(130) wunknown type '"*'" in #[el]if sizeof() (Preprocessor)

An unknown type was used in a preprocessor sizeof (). The preprocessor can only evaluate
sizeof () with basic types, or pointers to basic types, e.g.:

#if sizeof (unt) == 2 /* should be: #if sizeof (int) == 2 */
i = OXFFFF;
#endif
(131) illegal type combination in #[el]if sizeof() (Preprocessor)

The preprocessor found an illegal type combination in the argument to sizeof () in a #if expres-
sion, e.g.

/* To sign, or not to sign, that is the error. */
#if sizeof (signed unsigned int) ==

i = O0xFFFF;
#endif

(132) no type specified in #[el]if sizeof() (Preprocessor)

Sizeof() was used in a preprocessor #1if expression, but no type was specified. The argument to
sizeof () in a preprocessor expression must be a valid simple type, or pointer to a simple type, e.g.:

#if sizeof() /* oops -- size of what? */
i=0;
#endif
(133) unknown type code (0x*) in #[el]if sizeof() (Preprocessor)

The preprocessor has made an internal error in evaluating a sizeof () expression. Check for a
malformed type specifier. This is an internal error. Contact HI-TECH Software technical support
with details.

(134) syntax error in #[el]if sizeof() (Preprocessor)

The preprocessor found a syntax error in the argument to sizeof, in a #if expression. Probable
causes are mismatched parentheses and similar things, e.g.:

#if sizeof (int == 2) // oops - should be: #if sizeof (int) == 2
1 = OxFFFF;
#endif

366

Error and Warning Messages

(135) unknown operator (*) in #if (Preprocessor)
The preprocessor has tried to evaluate an expression with an operator it does not understand. This is
an internal error. Contact HI-TECH Software technical support with details.

(137) strange character '*' after ## (Preprocessor)

A character has been seen after the token catenation operator ## that is neither a letter nor a digit.
Since the result of this operator must be a legal token, the operands must be tokens containing only
letters and digits, e.g.:

/* the ' character will not lead to a valid token */
#define cc(a, b) a ## 'b

(138) strange character (*) after ## (Preprocessor)

An unprintable character has been seen after the token catenation operator ## that is neither a letter
nor a digit. Since the result of this operator must be a legal token, the operands must be tokens
containing only letters and digits, e.g.:

/* the '’ character will not lead to a valid token */
#define cc(a, b) a ## b

(139) end of file in comment (Preprocessor)
End of file was encountered inside a comment. Check for a missing closing comment flag, e.g.:

/* Here the comment begins. I’m not sure where I end, though

(140) can’t open * file ""*'': * (Driver, Preprocessor, Code Generator, Assembler)

The command file specified could not be opened for reading. Confirm the spelling and path of the
file specified on the command line, e.g.:

picc @communds
should that be:

picc €commands

367

Error and Warning Messages

(141) can’t open * file ""*"';: * (Any)
An output file could not be created. Confirm the spelling and path of the file specified on the com-
mand line.

(144) too many nested #if blocks (Preprocessor)

#1if, #1fdef etc. blocks may only be nested to a maximum of 32.

(146) #include filename too long (Preprocessor)
A filename constructed while looking for an include file has exceeded the length of an internal buffer.
Since this buffer is 4096 bytes long, this is unlikely to happen.

(147) too many #include directories specified (Preprocessor)
A maximum of 7 directories may be specified for the preprocessor to search for include files. The
number of directories specified with the driver is too great.

(148) too many arguments for preprocessor macro (Preprocessor)

A macro may only have up to 31 parameters, as per the C Standard.

(149) preprocessor macro work area overflow (Preprocessor)

The total length of a macro expansion has exceeded the size of an internal table. This table is

normally 32768 bytes long. Thus any macro expansion must not expand into a total of more than
32K bytes.

(150) illegal ""__'' preprocessor macro ''*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(151) too many arguments in preprocessor macro expansion (Preprocessor)

There were too many arguments supplied in a macro invocation. The maximum number allowed is
31.

(152) bad dp/nargs in openpar(): ¢ = * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

368

Error and Warning Messages

(153) out of space in preprocessor macro ''*' argument expansion (Preprocessor)
A macro argument has exceeded the length of an internal buffer. This buffer is normally 4096 bytes
long.

(155) work buffer overflow conatenating ''*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(156) work buffer "*'" overflow (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(157) can’t allocate * bytes of memory (Code Generator, Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(158) invalid disable in preprocessor macro ''*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(159) too many calls to unget() (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(161) control line '*'" within preprocessor macro expansion (Preprocessor)
A preprocessor control line (one starting with a #) has been encountered while expanding a macro.
This should not happen.

(162) #warning: * (Preprocessor, Driver)

This warning is either the result of user-defined #warning preprocessor directive or the driver en-
countered a problem reading the the map file. If the latter then please HI-TECH Software technical
support with details

(163) unexpected text in control line ignored (Preprocessor)

This warning occurs when extra characters appear on the end of a control line, e.g. The extra text
will be ignored, but a warning is issued. It is preferable (and in accordance with Standard C) to
enclose the text as a comment, e.g.:

369

Error and Warning Messages

#if defined(END)
#define NEXT
#endif END /* END would be better in a comment here */

(164) #include filename "'*'" was converted to lower case (Preprocessor)

The #include file name had to be converted to lowercase before it could be opened, e.g.:

#include <STDIO.H> /* oops —-- should be: #include <stdio.h> */

(165) #include filename "*'"" does not match actual name (check upper/lower case) (Prepro-
cessor)

In Windows versions this means the file to be included actually exists and is spelt the same way as
the #include filename, however the case of each does not exactly match. For example, specifying
#include “code.c” will include Code.c if it is found. In Linux versions this warning could occur
if the file wasn’t found.

(166) too few values specified with option "*" (Preprocessor)

The list of values to the preprocessor (CPP) -5 option is incomplete. This should not happen if the
preprocessor is being invoked by the compiler driver. The values passes to this option represent the
sizes of char, short, int, long, float and double types.

(167) too many values specified with -S option; '*'" unused (Preprocessor)

There were too many values supplied to the -S preprocessor option. See the Error Message -s, too
few values specified in * on page 370.

(168) unknown option ""*" (Any)

This option given to the component which caused the error is not recognized.

(169) strange character (*) after ## (Preprocessor)

There is an unexpected character after #.

370

Error and Warning Messages

(170) symbol "*'" in undef was never defined (Preprocessor)

The symbol supplied as argument to #undef was not already defined. This warning may be disabled
with some compilers. This warning can be avoided with code like:

#ifdef SYM

#undef SYM /* only undefine if defined */
fendif

(171) wrong number of preprocessor macro arguments for ''*'' (* instead of *)(Preprocessor)
A macro has been invoked with the wrong number of arguments, e.g.:

#define ADD(a, b) (atb)
ADD (1, 2, 3) /* oops -- only two arguments required */

(172) formal parameter expected after # (Preprocessor)

The stringization operator # (not to be confused with the leading # used for preprocessor control
lines) must be followed by a formal macro parameter, e.g.:

#define str(x) #y /* oops -- did you mean x instead of y? */
If you need to stringize a token, you will need to define a special macro to do it, e.g.
#define _ mkstr__ (x) #x

then use __mkstr__ (token) wherever you need to convert a token into a string.

(173) undefined symbol "*" in #if, 0 used (Preprocessor)

A symbol on a #if expression was not a defined preprocessor macro. For the purposes of this
expression, its value has been taken as zero. This warning may be disabled with some compilers.
Example:

#if FOO+BAR /* e.g. FOO was never #defined */

#define GOOD
#endif

371

Error and Warning Messages

(174) multi-byte constant ''*'" isn’t portable (Preprocessor)

Multi-byte constants are not portable, and in fact will be rejected by later passes of the compiler,
e.g.

#1f CHAR == 'ab’
#define MULTI
#endif

(175) division by zero in #if; zero result assumed (Preprocessor)

Inside a #1f expression, there is a division by zero which has been treated as yielding zero, e.g.:

#if foo/0 /* divide by 0: was this what you were intending? */
int a;
#endif

(176) missing newline (Preprocessor)

A new line is missing at the end of the line. Each line, including the last line, must have a new line
at the end. This problem is normally introduced by editors.

(177) symbol "*'" in -U option was never defined (Preprocessor)
A macro name specified in a -U option to the preprocessor was not initially defined, and thus cannot
be undefined.

(179) nested comments (Preprocessor)

This warning is issued when nested comments are found. A nested comment may indicate that a
previous closing comment marker is missing or malformed, e.g.:

output = 0; /* a comment that was left unterminated

flag = TRUE; /* next comment:
hey, where did this line go? */

(180) unterminated comment in included file (Preprocessor)

Comments begun inside an included file must end inside the included file.

372

Error and Warning Messages

(181) non-scalar types can’t be converted to other types (Parser)

You can’t convert a structure, union or array to another type, e.g.:

struct TEST test;
struct TEST * sp;
sp = test; /* oops -- did you mean: sp = &test; ? */
(182) illegal conversion between types (Parser)

This expression implies a conversion between incompatible types, e.g. a conversion of a structure
type into an integer, e.g.:

struct LAYOUT layout;
int i;
layout = i; /* int cannot be converted to struct */

Note that even if a structure only contains an int, for example, it cannot be assigned to an int
variable, and vice versa.

(183) function or function pointer required (Parser)

Only a function or function pointer can be the subject of a function call, e.g.:

int a, b, ¢, d;
a = b(ctd); /* b is not a function --
did you mean a = b*(c+d) ? */

(184) calling an interrupt function is illegal (Parser)

A function qualified interrupt can’t be called from other functions. It can only be called by a
hardware (or software) interrupt. This is because an interrupt function has special function entry
and exit code that is appropriate only for calling from an interrupt. An interrupt function can call
other non-interrupt functions.

(185) function does not take arguments (Parser, Code Generator)

This function has no parameters, but it is called here with one or more arguments, e.g.:

373

Error and Warning Messages

int get_value(void);
void main(void)
{
int input;
input = get_value(6); /* oops --
parameter should not be here */

(186) too many function arguments (Parser)

This function does not accept as many arguments as there are here.

void add(int a, int b);
add (5, 7, input); /* call has too many arguments */
(187) too few function arguments (Parser)

This function requires more arguments than are provided in this call, e.g.:

void add(int a, int b);
add (5); /* this call needs more arguments */
(188) constant expression required (Parser)

In this context an expression is required that can be evaluated to a constant at compile time, e.g.:

int a;
switch (input) {
case a: /* oops!
can’t use variable as part of a case label */
input++;

(189) illegal type for array dimension (Parser)

An array dimension must be either an integral type or an enumerated value.

int array[12.5]; /* oops -- twelve and a half elements, eh? */

374

Error and Warning Messages

(190) illegal type for index expression (Parser)

An index expression must be either integral or an enumerated value, e.g.:

int i, array[10];
i = array[3.5]; /* oops --
exactly which element do you mean? */

(191) cast type must be scalar or void (Parser)

A typecast (an abstract type declarator enclosed in parentheses) must denote a type which is either
scalar (i.e. not an array or a structure) or the type void, e.g.:

lip = (long [])input; /* oops -- maybe: lip = (long *)input */

(192) undefined identifier '*" (Parser)

This symbol has been used in the program, but has not been defined or declared. Check for spelling
errors if you think it has been defined.

(193) not a variable identifier '*" (Parser)

This identifier is not a variable; it may be some other kind of object, e.g. a label.

(194) ')" expected (Parser)

A closing parenthesis,) , was expected here. This may indicate you have left out this character in an
expression, or you have some other syntax error. The error is flagged on the line at which the code
first starts to make no sense. This may be a statement following the incomplete expression, e.g.:

if(a == b /* the closing parenthesis is missing here */
b =0; /* the error is flagged here */

(195) expression syntax (Parser)

This expression is badly formed and cannot be parsed by the compiler, e.g.:

a /=% b; /* oops -- maybe that should be: a /= b; */

375

Error and Warning Messages

(196) struct/union required (Parser)

A structure or union identifier is required before a dot ., e.g.:

int a;
a.b =9; /* oops —— a is not a structure */
(197) struct/union member expected (Parser)

"non

A structure or union member name must follow a dot (".") or arrow ("->").

(198) undefined struct/union ''*'' (Parser)

The specified structure or union tag is undefined, e.g.

struct WHAT what; /* a definition for WHAT was never seen */

(199) logical type required (Parser)

The expression used as an operand to if, while statements or to boolean operators like ! and &&
must be a scalar integral type, e.g.:

struct FORMAT format;
if (format) /* this operand must be a scaler type */
format.a = 0;

(200) taking the address of a register variable is illegal (Parser)

A variable declared register may not have storage allocated for it in memory, and thus it is illegal
to attempt to take the address of it by applying the &« operator, e.g.:

int * proc(register int in)

{
int * ip = ∈
/* oops -- in may not have an address to take */
return ip;

(201) taking the address of this object is illegal (Parser)

The expression which was the operand of the & operator is not one that denotes memory storage ("an
Ivalue") and therefore its address can not be defined, e.g.:

ip = &8; /* oops -- you can’t take the address of a literal */

376

Error and Warning Messages

(202) only lvalues may be assigned to or modified (Parser)

Only an lvalue (i.e. an identifier or expression directly denoting addressable storage) can be assigned
to or otherwise modified, e.g.:

int array[10];

int * ip;

char c;

array = 1ip; /* array isn’t a variable,
it can’t be written to */

A typecast does not yield an lvalue, e.g.:

/* the contents of ¢ cast to int
is only a intermediate value */
(int)c = 1;

However you can write this using pointers:

*(int *)&c =1

(203) illegal operation on bit variable (Parser)

Not all operations on bit variables are supported. This operation is one of those, e.g.:

bit b;
int * ip;
ip = &b; /* oops --
cannot take the address of a bit object */

(204) void function can’t return a value (Parser)

A void function cannot return a value. Any return statement should not be followed by an expres-
sion, e.g.:

void run(void)
{
step();
return 1;
/* either run should not be void, or remove the 1 */

377

Error and Warning Messages

(205) integral type required (Parser)

This operator requires operands that are of integral type only.

(206) illegal use of void expression (Parser)

A void expression has no value and therefore you can’t use it anywhere an expression with a value
is required, e.g. as an operand to an arithmetic operator.

(207) simple type required for ""*" (Parser)

A simple type (i.e. not an array or structure) is required as an operand to this operator.

(208) operands of ''*'' not same type (Parser)

The operands of this operator are of different pointer, e.g.:
int * ip;
char * cp, * cp2;
cp = flag ? ip : cp2;
/* result of ? : will be int * or char * */

Maybe you meant something like:

cp = flag ? (char *)ip : cp2;

(209) type conflict (Parser)

The operands of this operator are of incompatible types.

(210) bad size list (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(211) taking sizeof bit is illegal (Parser)

It is illegal to use the sizeof operator with the HI-TECH C bit type. When used against a type the
sizeof operator gives the number of bytes required to store an object that type. Therefore its usage
with the bit type make no sense and is an illegal operation.

378

Error and Warning Messages

(212) missing number after pragma ''pack" (Parser)

The pragma pack requires a decimal number as argument. This specifies the alignment of each
member within the structure. Use this with caution as some processors enforce alignment and will
not operate correctly if word fetches are made on odd boundaries, e.g.:

#pragma pack /* what is the alignment value */
Maybe you meant something like:

#pragma pack 2

(214) missing number after pragma "interrupt_level" (Parser)

The pragma interrupt_level requires an argument from 0 to 7.

(215) missing argument to pragma ''switch" (Parser)
The pragma switch requires an argument of auto, direct or simple, e.g.:

#pragma switch /* oops -- this requires a switch mode */
maybe you meant something like:

#pragma switch simple

(216) missing argument to pragma ''psect' (Parser)

The pragma psect requires an argument of the form oldname=newname where oldname is an
existing psect name known to the compiler, and newname is the desired new name, e.g.:

#pragma psect /* oops -- this requires an psect to redirect */
maybe you meant something like:

#pragma psect text=specialtext

(218) missing name after pragma ''inline" (Parser)

The inline pragma expects the name of a function to follow. The function name must be recognized
by the code generator for it to be expanded; other functions are not altered, e.g.:

#pragma inline /* what is the function name? */
maybe you meant something like:

#pragma inline memcpy

379

Error and Warning Messages

(219) missing name after pragma ''printf_check" (Parser)

The printf_check pragma expects the name of a function to follow. This specifies printf-style
format string checking for the function, e.g.

#pragma printf_check /* what function is to be checked? */
Maybe you meant something like:
#pragma printf_check sprintf
Pragmas for all the standard printf-like function are already contained in <stdio.h>.
(220) exponent expected (Parser)
A floating point constant must have at least one digit after the e or E., e.g.:

float f;
f = 1.234e; /* oops —-— what is the exponent? */

(221) hexadecimal digit expected (Parser)
After 0x should follow at least one of the hex digits 0-9 and A-F or a-f, e.g.:

a = 0xgb6; /* oops -- was that meant to be a = 0xf6 ? */
(222) binary digit expected (Parser)
A binary digit was expected following the 0b format specifier, e.g.

i = 0bf000; /* wooops -- f000 is not a base two value */

(223) digit out of range (Parser, Assembler, Optimiser)

A digit in this number is out of range of the radix for the number, e.g. using the digit 8 in an octal
number, or hex digits A-F in a decimal number. An octal number is denoted by the digit string
commencing with a zero, while a hex number starts with "0X" or "0x". For example:

int a = 058;
/* leading 0 implies octal which has digits 0 - 7 */

380

Error and Warning Messages

(224) illegal ""#" directive (Parser)
An illegal # preprocessor has been detected. Likely a directive has been misspelt in your code
somewhere.

(225) missing character in character constant (Parser)

The character inside the single quotes is missing, e.g.:

char ¢ = "”; /* the character value of what? */

(226) char const too long (Parser)

A character constant enclosed in single quotes may not contain more than one character, e.g.:

c ="'"12"; /* oops -- only one character may be specified */

(227) "." expected after ".." (Parser)

The only context in which two successive dots may appear is as part of the ellipsis symbol, which
must have 3 dots. (An ellipsis is used in function prototypes to indicate a variable number of param-
eters.)

Either .. was meant to be an ellipsis symbol which would require you to add an extra dot, or it
was meant to be a structure member operator which would require you remove one dot.

(228) illegal character (0x*) (Parser)

This character is illegal in the C code. Valid characters are the letters, digits and those comprising
the acceptable operators, e.g.:

\ \ I ’

c = ‘a'; /* oops -- did you mean c = "a’; ? */

(229) unknown qualifier ''*'' given to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(230) missing argument to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

381

Error and Warning Messages

(231) unknown qualifier ''*'" given to -1 (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(232) missing argument to -1 (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(233) bad -Q option "*" (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(234) close error (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(236) simple integer expression required (Parser)

A simple integral expression is required after the operator @, used to associate an absolute address
with a variable, e.g.:

int address;
char LOCK @ address;

(237) function "*" redefined (Parser)

More than one definition for a function has been encountered in this module. Function overloading
is illegal, e.g.:

int twice(int a)
{

return a*2;
}
/* only one prototype & definition of rv can exist */
long twice(long a)
{

return a*2;

382

Error and Warning Messages

(238) illegal initialisation (Parser)

You can’t initialise a typedef declaration, because it does not reserve any storage that can be ini-
tialised, e.g.:

/* oops -- uint is a type, not a variable */
typedef unsigned int uint = 99;

(239) identifier "*" redefined (from line *) (Parser)
This identifier has already been defined in the same scope. It cannot be defined again, e.g.:

int a; /* a filescope variable called “a” */
int a; /* attempting to define another of the same name */

Note that variables with the same name, but defined with different scopes are legal, but not recom-
mended.

(240) too many initializers (Parser)

There are too many initializers for this object. Check the number of initializers against the object
definition (array or structure), e.g.:

/* three elements, but four initializers */
int ivals[3] = { 2, 4, 6, 8};

(241) initialization syntax (Parser)

The initialisation of this object is syntactically incorrect. Check for the correct placement and num-
ber of braces and commas, e.g.:

int iarray[l1l0] = {{'a’, 'b’, 'c'};

/* oops -- one two many {s */

(242) illegal type for switch expression (Parser)

A switch operation must have an expression that is either an integral type or an enumerated value,
e.g:
double d;
switch(d) { /* oops -- this must be integral */
case '1.0":
d = 0;

383

Error and Warning Messages

(243) inappropriate break/continue (Parser)

A break or continue statement has been found that is not enclosed in an appropriate control struc-
ture. A continue can only be used inside a while, for or do while loop, while break can only be
used inside those loops or a switch statement, e.g.:

switch (input) {
case 0:
if (output == 0)
input = Oxff;
} /* oops! this shouldn’t be here and closed the switch */
break; /* this should be inside the switch */

(244) "default' case redefined (Parser)

There is only allowed to be one default label in a switch statement. You have more than one, e.g.:

switch(a) {
default: /* if this is the default case... */
b =9;
break;
default: /* then what is this? */
b = 10;
break;

(245) "default' case not in switch (Parser)

A label has been encountered called default but it is not enclosed by a switch statement. A
default label is only legal inside the body of a switch statement.

If there is a switch statement before this default label, there may be one too many closing
braces in the switch code which would prematurely terminate the switch statement. See example
for Error Message ’ case’ not in switch on page 384.

(246) case label not in switch (Parser)

A case label has been encountered, but there is no enclosing switch statement. A case label may
only appear inside the body of a switch statement.

If there is a switch statement before this case label, there may be one too many closing braces
in the switch code which would prematurely terminate the switch statement, e.g.:

384

Error and Warning Messages

switch (input) {
case '0':
count++;
break;
case "1":
if (count>MAX)
count= 0;
} /* oops —-- this shouldn’t be here */
break;
case '2": /* error flagged here */

(247) duplicate label '"*" (Parser)

The same name is used for a label more than once in this function. Note that the scope of labels is
the entire function, not just the block that encloses a label, e.g.:

start:
if(a > 256)
goto end;

start: /* error flagged here */
if(a == 0)

goto start; /* which start label do I jump to? */

(248) inappropriate "else" (Parser)

An else keyword has been encountered that cannot be associated with an if statement. This may
mean there is a missing brace or other syntactic error, e.g.:

/* here is a comment which I have forgotten to close...

if(a > b) {
c = 0;
/* ... that will be closed here, thus removing the “if” */
else /* my “if” has been lost */
c = 0xff;
(249) probable missing ''}" in previous block (Parser)

The compiler has encountered what looks like a function or other declaration, but the preceding
function has not been ended with a closing brace. This probably means that a closing brace has been
omitted from somewhere in the previous function, although it may well not be the last one, e.g.:

385

Error and Warning Messages

void set (char a)
{
PORTA = a;
/* the closing brace was left out here */
void clear(void) /* error flagged here */
{
PORTA = 0;

(251) array dimension redeclared (Parser)

An array dimension has been declared as a different non-zero value from its previous declaration. It
is acceptable to redeclare the size of an array that was previously declared with a zero dimension,
but not otherwise, e.g.:

extern int array[5];
int array[10]; /* oops -- has it 5 or 10 elements? */

(252) argument * conflicts with prototype (Parser)

The argument specified (argument O is the left most argument) of this function definition does not
agree with a previous prototype for this function, e.g.:

/* this is supposedly calc’s prototype */

extern int calc(int, int);

int calc(int a, long int b) /* hmmm -- which is right? */

{ /* error flagged here */
return sin(b/a);

(253) argument list conflicts with prototype (Parser)

The argument list in a function definition is not the same as a previous prototype for that function.
Check that the number and types of the arguments are all the same.

extern int calc(int); /* this is supposedly calc’s prototype */
int calc(int a, int b) /* hmmm -- which is right? */
{ /* error flagged here */

return a + b;

386

Error and Warning Messages

(254) undefined *: "'*" (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(255) not a member of the struct/union ''*" (Parser)

This identifier is not a member of the structure or union type with which it used here, e.g.:

struct {
int a, b, c¢;
} data;
if (data.d) /* oops --—
there is no member d in this structure */
return;
(256) too much indirection (Parser)

A pointer declaration may only have 16 levels of indirection.
(257) only "register' storage class allowed (Parser)
The only storage class allowed for a function parameter is register, e.g.:

void process(static int input)

(258) duplicate qualifier (Parser)

There are two occurrences of the same qualifier in this type specification. This can occur either
directly or through the use of a typedef. Remove the redundant qualifier. For example:

typedef volatile int vint;

/* oops -- this results in two volatile qualifiers */
volatile vint very_vol;

(259) can’t be qualifed both far and near (Parser)

It is illegal to qualify a type as both far and near, e.g.:

far near int spooky; /* oops -- choose far or near, not both */

387

Error and Warning Messages

(260) undefined enum tag "'*" (Parser)

This enum tag has not been defined, e.g.:

enum WHAT what; /* a definition for WHAT was never seen */

(261) struct/union member "*'" redefined (Parser)

This name of this member of the struct or union has already been used in this struct or union, e.g.:

struct {

int a;

int b;

int a; /* oops -- a different name is required here */
} input;

(262) struct/union "*" redefined (Parser)

A structure or union has been defined more than once, e.g.:

struct {
int a;
} ms;
struct {
int a;
} ms; /* was this meant to be the same name as above? */
(263) members can’t be functions (Parser)

A member of a structure or a union may not be a function. It may be a pointer to a function, e.g.:
struct {
int a;

int get (int); /* should be a pointer: int (*get) (int); */
} object;

(264) bad bitfield type (Parser)

A bitfield may only have a type of int (signed or unsigned), e.g.:

388

Error and Warning Messages

struct FREG {

char b0:1; /* these must be part of an int, not char */
char 165
char b7:1;
} freg;
(265) integer constant expected (Parser)

A colon appearing after a member name in a structure declaration indicates that the member is a
bitfield. An integral constant must appear after the colon to define the number of bits in the bitfield,

e.g.

struct {
unsigned first: /* oops -- should be: unsigned first; */
unsigned second;

} my_struct;

If this was meant to be a structure with bitfields, then the following illustrates an example:

struct {
unsigned first : 4; /* 4 bits wide */
unsigned second: 4; /* another 4 bits */
} my_struct;

(266) storage class illegal (Parser)

A structure or union member may not be given a storage class. Its storage class is determined by the
storage class of the structure, e.g.:

struct {
/* no additional qualifiers may be present with members */
static int first;

b
(267) bad storage class (Code Generator)
The code generator has encountered a variable definition whose storage class is invalid, e.g.:

auto int foo; /* auto not permitted with global variables */
int power (static int a) /* parameters may not be static */

{

389

Error and Warning Messages

return foo * a;

(268) inconsistent storage class (Parser)

A declaration has conflicting storage classes. Only one storage class should appear in a declaration,
e.g.

extern static int where; /* so 1s it static or extern? */

(269) inconsistent type (Parser)
Only one basic type may appear in a declaration, e.g.:
int float if; /* is it int or float? */
(270) variable can’t have storage class ''register' (Parser)
Only function parameters or auto variables may be declared using the register qualifier, e.g.:
register int gi; /* this cannot be qualified register */
int process(register int input) /* this is okay */

{

return input + gi;

(271) type can’t be long (Parser)

Only int and float can be qualified with long.

long char lc; /* what? */
(272) type can’t be short (Parser)
Only int can be modified with short, e.g.:

short float sf; /* what? */

390

Error and Warning Messages

(273) type can’t be both signed and unsigned (Parser)

The type modifiers signed and unsigned cannot be used together in the same declaration, as they
have opposite meaning, e.g.:

signed unsigned int confused; /* which is it? */

(274) type can’t be unsigned (Parser)

A floating point type cannot be made unsigned, e.g.:

unsigned float uf; /* what? */

(275) "..." illegal in non-prototype argument list (Parser)

The ellipsis symbol may only appear as the last item in a prototyped argument list. It may not
appear on its own, nor may it appear after argument names that do not have types, i.e. K&R-style
non-prototype function definitions. For example:

/* K&R-style non-prototyped function definition */
int kandr(a, b, ...)
int a, b;

{

(276) type specifier required for prototyped argument (Parser)

A type specifier is required for a prototyped argument. It is not acceptable to just have an identifier.

(277) can’t mix prototyped and non-prototyped arguments (Parser)

A function declaration can only have all prototyped arguments (i.e. with types inside the parentheses)
or all K&R style args (i.e. only names inside the parentheses and the argument types in a declaration
list before the start of the function body), e.g.:

int plus(int a, b) /* oops -- a is prototyped, b is not */
int b;
{

return a + b;

391

Error and Warning Messages

(278) argument ''*'" redeclared (Parser)
The specified argument is declared more than once in the same argument list, e.g.

/* can’t have two parameters called “a” */

int calc(int a, int a)
(279) initialization of function arguments is illegal (Parser)

A function argument can’t have an initialiser in a declaration. The initialisation of the argument
happens when the function is called and a value is provided for the argument by the calling function,

e.g.:
/* oops -- a 1s initialized when proc is called */
extern int proc(int a = 9);
(280) arrays of functions are illegal (Parser)

You can’t define an array of functions. You can however define an array of pointers to functions,
e.g.
int * farray[](); /* oops —-- should be: int (* farrayl[])(); */

(281) functions can’t return functions (Parser)

A function cannot return a function. It can return a function pointer. A function returning a pointer
to a function could be declared like this: int (* (name()))(). Note the many parentheses that are
necessary to make the parts of the declaration bind correctly.

(282) functions can’t return arrays (Parser)

A function can return only a scalar (simple) type or a structure. It cannot return an array.

(283) dimension required (Parser)

Only the most significant (i.e. the first) dimension in a multi-dimension array may not be assigned a
value. All succeeding dimensions must be present as a constant expression, e.g.:

/* This should be, e.g.: int arr[][7] */
int get_element (int arr[2][])

{

return array[l][6];

392

Error and Warning Messages

(284) invalid dimension (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(285) no identifier in declaration (Parser)

The identifier is missing in this declaration. This error can also occur where the compiler has been
confused by such things as missing closing braces, e.g.:

void interrupt (void) /* what is the name of this function? */
{
}

(286) declarator too complex (Parser)
This declarator is too complex for the compiler to handle. Examine the declaration and find a way
to simplify it. If the compiler finds it too complex, so will anybody maintaining the code.

(287) arrays of bits or pointers to bit are illegal (Parser)

It is not legal to have an array of bits, or a pointer to bit variable, e.g.:

bit barray[10]; /* wrong -- no bit arrays */
bit * Dbp; /* wrong -- no pointers to bit variables */
(288) only functions may be void (Parser)

A variable may not be void. Only a function can be void, e.g.:

int aj;
void b; /* this makes no sense */

(289) only functions may be qualified "interrupt' (Parser)
The qualifier interrupt may not be applied to anything except a function, e.g.:

/* variables cannot be qualified interrupt */
interrupt int input;

393

Error and Warning Messages

(290) illegal function qualifier(s) (Parser)

A qualifier has been applied to a function which makes no sense in this context. Some qualifier
only make sense when used with an lvalue, e.g. const or volatile. This may indicate that you have
forgotten out a star * indicating that the function should return a pointer to a qualified object, e.g.

const char ccrv(void) /* const * char ccrv(void) perhaps? */
{ /* error flagged here */
return ccip;
}
(291) K&R identifier ''*' not an argument (Parser)

This identifier that has appeared in a K&R style argument declarator is not listed inside the paren-
theses after the function name, e.g.:

int process (input)

int unput; /* oops -- that should be int input; */
{

}

(292) function parameter may not be a function (Parser)

A function parameter may not be a function. It may be a pointer to a function, so perhaps a "*" has
been omitted from the declaration.

(293) bad size in index_type() (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(294) can’t allocate * bytes of memory (Code Generator, Hexmate)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(295) expression too complex (Parser)

This expression has caused overflow of the compiler’s internal stack and should be re-arranged or
split into two expressions.

(296) out of memory (Objtohex)

This could be an internal compiler error. Contact HI-TECH Software technical support with details.

394

Error and Warning Messages

(297) bad argument (*) to tysize() (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(298) end of file in #asm (Preprocessor)

An end of file has been encountered inside a #asm block. This probably means the #endasm is
missing or misspelt, e.g.:

#asm
mov r0, #55
mov [rl], r0
} /* oops -- where is the #endasm */

(300) unexpected end of file (Parser)
An end-of-file in a C module was encountered unexpectedly, e.g.:

void main (void)

{

init ();
run(); /* 1s that 1it? What about the close brace */
(301) end of file on string file (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(302) can’treopen "*'': * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(303) can’t allocate * bytes of memory (line *) (Parser)

The parser was unable to allocate memory for the longest string encountered, as it attempts to sort
and merge strings. Try reducing the number or length of strings in this module.

(306) can’t allocate * bytes of memory for * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

395

Error and Warning Messages

(307) too many qualifier names (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(308) too many case labels in switch (Code Generator)
There are too many case labels in this switch statement. The maximum allowable number of case
labels in any one switch statement is 511.

(309) too many symbols (Assembler)
There are too many symbols for the assembler’s symbol table. Reduce the number of symbols in
your program.

(310) '"]" expected (Parser)

A closing square bracket was expected in an array declaration or an expression using an array index,
e.g.

process (carray[idx); /* oops —-—
should be: process(carray[idx]); */

(311) closing quote expected (Parser)

A closing quote was expected for the indicated string.

(312) '"*" expected (Parser)

The indicated token was expected by the parser.

(313) function body expected (Parser)

Where a function declaration is encountered with K&R style arguments (i.e. argument names but no
types inside the parentheses) a function body is expected to follow, e.g.:

/* the function block must follow, not a semicolon */
int get_value(a, b);

396

Error and Warning Messages

(314) ;" expected (Parser)

A semicolon is missing from a statement. A close brace or keyword was found following a statement
with no terminating semicolon, e.g.:

while(a) {
b = a-- /* oops -- where is the semicolon? */
} /* error is flagged here */

Note: Omitting a semicolon from statements not preceding a close brace or keyword typically results
in some other error being issued for the following code which the parser assumes to be part of the
original statement.

(315) "{" expected (Parser)

An opening brace was expected here. This error may be the result of a function definition missing
the opening brace, e.g.:

/* oops! no opening brace after the prototype */
void process (char c)
return max(c, 10) * 2; /* error flagged here */

(316) '"}" expected (Parser)

A closing brace was expected here. This error may be the result of a initialized array missing the
closing brace, e.g.:

char carray(4] = { 1, 2, 3, 4; /* oops -- no closing brace */

(317) "(" expected (Parser)

An opening parenthesis, (, was expected here. This must be the first token after a while, for, if,
do or asm keyword, e.g.:

if a == Db /* should be: if(a == Db) */
b =0;
(318) string expected (Parser)
The operand to an asm statement must be a string enclosed in parentheses, e.g.:

asm(nop); /* that should be asm(“nop”);

397

Error and Warning Messages

(319) while expected (Parser)

The keyword while is expected at the end of a do statement, e.g.:

do {
func (i++);
} /* do the block while what condition is true? */
if(i > 5) /* error flagged here */
end () ;
(320) '":" expected (Parser)

A colon is missing after a case label, or after the keyword default. This often occurs when a
semicolon is accidentally typed instead of a colon, e.g.:

switch (input) {
case 0; /* oops -- that should have been: case 0: */
state = NEW;

(321) label identifier expected (Parser)

An identifier denoting a label must appear after goto, e.g.:
if(a)

goto 20;
/* this is not BASIC -- a valid C label must follow a goto */

(322) enum tag or "{'" expected (Parser)

After the keyword enum must come either an identifier that is or will be defined as an enum tag, or
an opening brace, e.g.:

enum 1, 2; /* should be, e.g.: enum {one=1, two }; */

(323) struct/union tag or ''{'" expected (Parser)

An identifier denoting a structure or union or an opening brace must follow a struct or union
keyword, e.g.:

struct int a; /* this is not how you define a structure */

You might mean something like:

398

Error and Warning Messages

struct {
int a;
} my_struct;

(324) too many arguments for printf-style format string (Parser)

There are too many arguments for this format string. This is harmless, but may represent an incorrect
format string, e.g.:

/* oops -- missed a placeholder? */
printf (“%d - %d”, low, high, median);

(325) error in printf-style format string (Parser)

There is an error in the format string here. The string has been interpreted as a print £ () style format
string, and it is not syntactically correct. If not corrected, this will cause unexpected behaviour at
run time, e.g.:

printf (“%1”, 111); /* oops -- maybe: printf(“%1d”, 111); */

(326) long int argument required in printf-style format string (Parser)

A long argument is required for this format specifier. Check the number and order of format speci-
fiers and corresponding arguments, e.g.:

printf (“$1x”, 2); // maybe you meant: printf(“%1x”, 2L);

(327) long long int argument required in printf-style format string (Parser)

A long long argument is required for this format specifier. Check the number and order of format
specifiers and corresponding arguments, e.g.:

printf (“%11x”, 2); // maybe you meant: printf (“%11x”, 2LL);

Note that not all HI-TECH C compilers provide support for a long long integer type.

(328) int argument required in printf-style format string (Parser)

An integral argument is required for this printf-style format specifier. Check the number and order
of format specifiers and corresponding arguments, e.g.:

printf (“%d”, 1.23); /* wrong number or wrong placeholder */

399

Error and Warning Messages

(329) double argument required in printf-style format string (Parser)

The printf format specifier corresponding to this argument is $f or similar, and requires a floating
point expression. Check for missing or extra format specifiers or arguments to printf.

printf (“%£”, 44); /* should be: printf (“$f”, 44.0); */

(330) pointer to * argument required in printf-style format string (Parser)
A pointer argument is required for this format specifier. Check the number and order of format
specifiers and corresponding arguments.

(331) too few arguments for printf-style format string (Parser)

There are too few arguments for this format string. This would result in a garbage value being printed
or converted at run time, e.g.:

printf (“%d - %d”, low);
/* oops! where is the other value to print? */
(332) "interrupt_level" should be 0 to 7 (Parser)
The pragma interrupt_level must have an argument from O to 7, e.g.:

#pragma interrupt_level /* oops -- what is the level */
void interrupt isr(void)
{

/* isr code goes here */

(333) unrecognized qualifier name after ''strings" (Parser)
The pragma strings was passed a qualifier that was not identified, e.g.:

/* oops -- should that be #pragma strings const ? */

#pragma strings cinst
(334) unrecognized qualifier name after ''printf_check' (Parser)
The #pragma printf_check was passed a qualifier that could not be identified, e.g.:

/* oops —-- should that be const not cinst? */

#pragma printf_check (printf) cinst

400

Error and Warning Messages

(335) unknown pragma ''*"' (Parser)

An unknown pragma directive was encountered, e.g.:

#pragma rugsused w /* I think you meant regsused */

(336) string concatenation across lines (Parser)

Strings on two lines will be concatenated. Check that this is the desired result, e.g.:

char * cp = “hi”
“there”; /* this is okay,
but is it what you had intended? */
(337) line does not have a newline on the end (Parser)

The last line in the file is missing the newline (operating system dependent character) from the end.
Some editors will create such files, which can cause problems for include files. The ANSI C standard
requires all source files to consist of complete lines only.

(338) can’t create * file "'*" (Any)
The application tried to create or open the named file, but it could not be created. Check that all file
pathnames are correct.

(339) initializer in extern declaration (Parser)

A declaration containing the keyword extern has an initialiser. This overrides the extern storage
class, since to initialise an object it is necessary to define (i.e. allocate storage for) it, e.g.:

extern int other = 99; /* if it’s extern and not allocated
storage, how can it be initialized? */
(340) string not terminated by null character. (Parser)

A char array is being initialized with a string literal larger than the array. Hence there is insufficient
space in the array to safely append a null terminating character, e.g.:

char foo[5] = “12345”; /* the string stored in foo won’t have

a null terminating, i.e.
foo:[lll’ I2/, I3I, I4I, IBI} */

401

Error and Warning Messages

(343) implicit return at end of non-void function (Parser)

A function which has been declared to return a value has an execution path that will allow it to reach
the end of the function body, thus returning without a value. Either insert a return statement with a
value, or if the function is not to return a value, declare it void, e.g.:

int mydiv(double a, int b)
{

if(b !'=0)
return a/b; /* what about when b is 0? */
} /* warning flagged here */
(344) non-void function returns no value (Parser)

A function that is declared as returning a value has a return statement that does not specify a return
value, e.g.:

int get_value (void)
{
if (flag)
return valt+t;
return;
/* what is the return value in this instance? */

(345) unreachable code (Parser)

This section of code will never be executed, because there is no execution path by which it could be
reached, e.g.:

while (1) /* how does this loop finish? */
process();
flag = FINISHED; /* how do we get here? */

(346) declaration of '"'*'" hides outer declaration (Parser)

An object has been declared that has the same name as an outer declaration (i.e. one outside and
preceding the current function or block). This is legal, but can lead to accidental use of one variable
when the outer one was intended, e.g.:

402

Error and Warning Messages

int input; /* input has filescope */
void process (int a)
{
int input; /* local blockscope input */
a = input; /* this will use the local variable.
Is this right? */

(347) external declaration inside function (Parser)

A function contains an extern declaration. This is legal but is invariably not desirable as it restricts
the scope of the function declaration to the function body. This means that if the compiler encounters
another declaration, use or definition of the extern object later in the same file, it will no longer have
the earlier declaration and thus will be unable to check that the declarations are consistent. This
can lead to strange behaviour of your program or signature errors at link time. It will also hide any
previous declarations of the same thing, again subverting the compiler’s type checking. As a general
rule, always declare extern variables and functions outside any other functions. For example:

int process(int a)

{
/* this would be better outside the function */
extern int away;
return away + a;

(348) auto variable '"*" should not be qualified (Parser)

An auto variable should not have qualifiers such as near or far associated with it. Its storage class
is implicitly defined by the stack organization. An auto variable may be qualified with static, but
it is then no longer auto.

(349) non-prototyped function declaration for "*" (Parser)

A function has been declared using old-style (K&R) arguments. It is preferable to use prototype
declarations for all functions, e.g.:

int process (input)

int input; /* warning flagged here */
{

}

This would be better written:

403

Error and Warning Messages

int process(int input)
{
}

(350) unused * "*" (from line *) (Parser)

The indicated object was never used in the function or module being compiled. Either this object is
redundant, or the code that was meant to use it was excluded from compilation or misspelt the name
of the object. Note that the symbols rcsid and sccsid are never reported as being unused.

(352) float parameter coerced to double (Parser)

Where a non-prototyped function has a parameter declared as f1oat, the compiler converts this into
a double float. This is because the default C type conversion conventions provide that when a
floating point number is passed to a non-prototyped function, it will be converted to double. It is
important that the function declaration be consistent with this convention, e.g.:

double inc_flt(f) /* f will be converted to double */
float f; /* warning flagged here */
{

return £ * 2;

(353) sizeof external array ''*'" is zero (Parser)

The size of an external array evaluates to zero. This is probably due to the array not having an
explicit dimension in the extern declaration.

(354) possible pointer truncation (Parser)

A pointer qualified far has been assigned to a default pointer or a pointer qualified near, or a default
pointer has been assigned to a pointer qualified near. This may result in truncation of the pointer and
loss of information, depending on the memory model in use.

(355) implicit signed to unsigned conversion (Parser)

A signed number is being assigned or otherwise converted to a larger unsigned type. Under the
ANSI "value preserving" rules, this will result in the signed value being first sign-extended to a
signed number the size of the target type, then converted to unsigned (which involves no change
in bit pattern). Thus an unexpected sign extension can occur. To ensure this does not happen, first
convert the signed value to an unsigned equivalent, e.g.:

404

Error and Warning Messages

signed char sc;
unsigned int ui;
ul = sc; /* 1f sc contains Oxff,
ui will contain Oxffff for example */

will perform a sign extension of the char variable to the longer type. If you do not want this to take
place, use a cast, e.g.:

ul = (unsigned char) sc;

(356) implicit conversion of float to integer (Parser)

A floating point value has been assigned or otherwise converted to an integral type. This could result
in truncation of the floating point value. A typecast will make this warning go away.

double dd;
int 1i;
i = dd; /* 1s this really what you meant? */
If you do intend to use an expression like this, then indicate that this is so by a cast:
i = (int)dd;
(357) illegal conversion of integer to pointer (Parser)

An integer has been assigned to or otherwise converted to a pointer type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform
the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the & address operator, e.g.:

int * ip;
int 1i;
ip = 1i; /* oops -- did you mean ip = &1 ? */
If you do intend to use an expression like this, then indicate that this is so by a cast:

ip = (int *)i;

405

Error and Warning Messages

(358) illegal conversion of pointer to integer (Parser)

A pointer has been assigned to or otherwise converted to a integral type. This will usually mean you
have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform
the compiler that you want the conversion and the warning will be suppressed. This may also mean
you have forgotten the * dereference operator, e.g.:

int * ip;
int i;
i = ip; /* oops -- did you mean i = *ip ? */
If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)ip;

(359) illegal conversion between pointer types (Parser)

A pointer of one type (i.e. pointing to a particular kind of object) has been converted into a pointer
of a different type. This will usually mean you have used the wrong variable, but if this is genuinely
what you want to do, use a typecast to inform the compiler that you want the conversion and the
warning will be suppressed, e.g.:

long input;
char * cp;
cp = &input; /* is this correct? */

This is common way of accessing bytes within a multi-byte variable. To indicate that this is the
intended operation of the program, use a cast:

cp = (char *)&input; /* that’s better */

This warning may also occur when converting between pointers to objects which have the same type,
but which have different qualifiers, e.g.:

char * cp;
/* yes, but what sort of characters? */
cp = “I am a string of characters”;

If the default type for string literals is const char *, then this warning is quite valid. This should
be written:

const char * cp;
cp = “I am a string of characters”; /* that’s better */

Omitting a qualifier from a pointer type is often disastrous, but almost certainly not what you intend.

406

Error and Warning Messages

(360) array index out of bounds (Parser)

An array is being indexed with a constant value that is less than zero, or greater than or equal to the
number of elements in the array. This warning will not be issued when accessing an array element
via a pointer variable, e.g.:

int i, * ip, input[10];

i = input[-2]; /* oops -- this element doesn’t exist */
ip = &input[5];
i=1ip[-2]; /* this is okay */
(361) function declared implicit int (Parser)

Where the compiler encounters a function call of a function whose name is presently undefined, the
compiler will automatically declare the function to be of type int, with unspecified (K&R style)
parameters. If a definition of the function is subsequently encountered, it is possible that its type
and arguments will be different from the earlier implicit declaration, causing a compiler error. The
solution is to ensure that all functions are defined or at least declared before use, preferably with
prototyped parameters. If it is necessary to make a forward declaration of a function, it should be
preceded with the keywords extern or static as appropriate. For example:

/* I may prevent an error arising from calls below */
void set (long a, int b);
void main (void)
{
/* by here a prototype for set should have seen */
set (10L, 6);

(362) redundant "'&' applied to array (Parser)

The address operator & has been applied to an array. Since using the name of an array gives its
address anyway, this is unnecessary and has been ignored, e.g.:

int array[5];

int * ip;

/* array is a constant, not a variable; the & is redundant. */
ip = &array;

407

Error and Warning Messages

(363) redundant '"'&' or "*'" applied to function address (Parser)

The address operator "&" has been applied to a function. Since using the name of a function gives
its address anyway, this is unnecessary and has been ignored, e.g.:

extern void foo(void);
void main(void)
{
void(*bar) (void);
/* both assignments are equivalent */
bar = &foo;
bar = foo; /* the & is redundant */

(364) attempt to modify object qualified * (Parser)

Objects declared const or code may not be assigned to or modified in any other way by your
program. The effect of attempting to modify such an object is compiler-specific.

const int out = 1234; /* “out” is read only */
out = 0; /* oops --—
writing to a read-only object */

(365) pointer to non-static object returned (Parser)

This function returns a pointer to a non-static (e.g. auto) variable. This is likely to be an error,
since the storage associated with automatic variables becomes invalid when the function returns,

e.g.

char * get_addr (void)
{
char c;
/* returning this is dangerous;
the pointer could be dereferenced */
return &c;

(366) operands of ''*'"' not same pointer type (Parser)

The operands of this operator are of different pointer types. This probably means you have used
the wrong pointer, but if the code is actually what you intended, use a typecast to suppress the error
message.

408

Error and Warning Messages

(367) identifier is already extern; can’t be static (Parser)

This function was already declared extern, possibly through an implicit declaration. It has now
been redeclared static, but this redeclaration is invalid.

void main (void)

{
/* at this point the compiler assumes set is extern... */
set (10L, 6);

}

/* now it finds out otherwise */

static void set(long a, int b)

{
PORTA = a + b;

(368) array dimension on ""*[]" ignored (Preprocessor)

An array dimension on a function parameter has been ignored because the argument is actually
converted to a pointer when passed. Thus arrays of any size may be passed. Either remove the
dimension from the parameter, or define the parameter using pointer syntax, e.g.:

/* param should be: “int array[]” or “int *” */

int get_first(int array[10])

{ /* warning flagged here */
return array[0];

(369) signed bitfields not supported (Parser)

Only unsigned bitfields are supported. If a bitfield is declared to be type int, the compiler still
treats it as unsigned, e.g.:

struct {
signed int sign: 1; /* this must be unsigned */
signed int value: 15;

b

(370) illegal basic type; int assumed (Parser)

The basic type of a cast to a qualified basic type couldn’t not be recognised and the basic type was
assumed to be int, e.g.:

409

Error and Warning Messages

/* here ling is assumed to be int */

unsigned char bar = (unsigned ling) '

.
a;

(371) missing basic type; int assumed (Parser)

This declaration does not include a basic type, so int has been assumed. This declaration is not
illegal, but it is preferable to include a basic type to make it clear what is intended, e.g.:

char c;
i; /* don’t let the compiler make assumptions, use : int 1 */
func(); /* ditto, use: extern int func(int); */

(372) "," expected (Parser)

A comma was expected here. This could mean you have left out the comma between two identifiers
in a declaration list. It may also mean that the immediately preceding type name is misspelled, and
has thus been interpreted as an identifier, e.g.:

unsigned char a;
/* thinks: chat & b are unsigned, but where is the comma? */
unsigned chat b;

(373) implicit signed to unsigned conversion (Parser)

An unsigned type was expected where a signed type was given and was implicitly cast to unsigned,
e.g.

unsigned int foo = -1;
/* the above initialization is implicitly treated as:
unsigned int foo = (unsigned) -1; */
(374) missing basic type; int assumed (Parser)

The basic type of a cast to a qualified basic type was missing and assumed to be int., e.g.:

int i = (signed) 2; /* (signed) assumed to be (signed int) */

(375) unknown FNREC type "*" (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

410

Error and Warning Messages

(376) bad non-zero node in call graph (Linker)

The linker has encountered a top level node in the call graph that is referenced from lower down in
the call graph. This probably means the program has indirect recursion, which is not allowed when
using a compiled stack.

(378) can’t create * file "'*"' (Hexmate)

This type of file could not be created. Is the file or a file by this name already in use?

(379) bad record type "'*" (Linker)

This is an internal compiler error. Ensure the object file is a valid HI-TECH object file. Contact
HI-TECH Software technical support with details.

(380) unknown record type (*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(381) record "*'" too long (*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(382) incomplete record: type = *, length = * (Dump, Xstrip)
This message is produced by the DUMP or XSTRIP utilities and indicates that the object file is not
a valid HI-TECH object file, or that it has been truncated. Contact HI-TECH Support with details.

(383) text record has length (*) too small (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(384) assertion failed: file *, line *, expression * (Linker, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(387) illegal or too many -G options (Linker)

There has been more than one linker —g option, or the —g option did not have any arguments follow-
ing. The arguments specify how the segment addresses are calculated.

411

Error and Warning Messages

(388) duplicate -M option (Linker)

The map file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of this
option is present on the command line. See Section 5.7.9 for information on the correct syntax for
this option.

(389) illegal or too many -O options (Linker)

This linker -o flag is illegal, or another -o option has been encountered. A -o option to the linker
must be immediately followed by a filename with no intervening space.

(390) missing argument to -P (Linker)
There have been too many -p options passed to the linker, or a -p option was not followed by any
arguments. The arguments of separate —p options may be combined and separated by commas.

(391) missing argument to -Q (Linker)

The -0 linker option requires the machine type for an argument.

(392) missing argument to -U (Linker)

The -U (undefine) option needs an argument.

(393) missing argument to -W (Linker)

The -W option (listing width) needs a numeric argument.

(394) duplicate -D or -H option (Linker)

The symbol file name has been specified to the linker for a second time. This should not occur if you
are using a compiler driver. If invoking the linker manually, ensure that only one instance of either
of these options is present on the command line.

(395) missing argument to -J (Linker)

The maximum number of errors before aborting must be specified following the -7 linker option.

412

Error and Warning Messages

(397) usage: hlink [-options] files.obj files.lib (Linker)

Improper usage of the command-line linker. If you are invoking the linker directly then please refer
to Section 5.7 for more details. Otherwise this may be an internal compiler error and you should
contact HI-TECH Software technical support with details.

(398) output file can’t be also an input file (Linker)

The linker has detected an attempt to write its output file over one of its input files. This cannot be
done, because it needs to simultaneously read and write input and output files.

(400) bad object code format (Linker)

This is an internal compiler error. The object code format of an object file is invalid. Ensure it is a
valid HI-TECH object file. Contact HI-TECH Software technical support with details.

(402) bad argument to -F (Objtohex)

The -F option for objtohex has been supplied an invalid argument. If you are invoking this
command-line tool directly then please refer to Section 5.11 for more details. Otherwise this may be
an internal compiler error and you should contact HI-TECH Software technical support with details.

(403) bad -E option: "'*" (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(404) bad maximum length value to -<digits> (Objtohex)
The first value to the OBJTOHEX -n, m hex length/rounding option is invalid.

(405) bad record size rounding value to -<digits> (Objtohex)
The second value to the OBJTOHEX -n, m hex length/rounding option is invalid.

(406) bad argument to -A (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(407) bad argument to -U (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

413

Error and Warning Messages

(408) bad argument to -B (Objtohex)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtohex
directly then see Section 5.11 for more details. Otherwise this may be an internal compiler error and
you should contact HI-TECH Software technical support with details.

(409) bad argument to -P (Objtohex)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtohex
directly then see Section 5.11 for more details. Otherwise this may be an internal compiler error and
you should contact HI-TECH Software technical support with details.

(410) bad combination of options (Objtohex)

The combination of options supplied to OBJTOHEX is invalid.

(412) text does not start at 0 (Objtohex)

Code in some things must start at zero. Here it doesn’t.

(413) write error on "'*" (Assembler, Linker, Cromwell)

A write error occurred on the named file. This probably means you have run out of disk space.

(414) read error on "'*" (Linker)

The linker encountered an error trying to read this file.

(415) text offset too low in COFF file (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(416) Dbad character (*) in extended TEKHEX line (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(417) seek error in "'*" (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

414

Error and Warning Messages

(418) image too big (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(419) object file is not absolute (Objtohex)

The object file passed to OBJTOHEX has relocation items in it. This may indicate it is the wrong object
file, or that the linker or OBJTOHEX have been given invalid options. The object output files from
the assembler are relocatable, not absolute. The object file output of the linker is absolute.

(420) too many relocation items (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(421) too many segments (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(422) 1o end record (Linker)
This object file has no end record. This probably means it is not an object file. Contact HI-TECH
Support if the object file was generated by the compiler.

(423) illegal record type (Linker)
There is an error in an object file. This is either an invalid object file, or an internal error in the linker.
Contact HI-TECH Support with details if the object file was created by the compiler.

(424) record too long (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(425) incomplete record (Objtohex, Libr)
The object file passed to OBJTOHEX or the librarian is corrupted. Contact HI-TECH Support with
details.

(427) syntax error in checksum list (Objtohex)
There is a syntax error in a checksum list read by OBJTOHEX. The checksum list is read from

standard input in response to an option.

415

Error and Warning Messages

(428) too many segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(429) bad segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(430) bad checksum specification (Objtohex)

A checksum list supplied to OBJTOHEX is syntactically incorrect.

(431) bad argument to -E (Objtoexe)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtoexe
directly then check this argument. Otherwise this may be an internal compiler error and you should
contact HI-TECH Software technical support with details.

(432) usage: objtohex [-ssymfile] [object-file [exe-file]] (Objtohex)

Improper usage of the command-line tool objtohex. If you are invoking objtohex directly then
please refer to Section 5.11 for more details. Otherwise this may be an internal compiler error and
you should contact HI-TECH Software technical support with details.

(434) too many symbols (*) (Linker)

There are too many symbols in the symbol table, which has a limit of * symbols. Change some
global symbols to local symbols to reduce the number of symbols.

(435) bad segment selector ''*"' (Linker)
The segment specification option (-G) to the linker is invalid, e.g.:

-GA/£0+10
Did you forget the radix?

-GA/£0h+10

(436) psect "*'" re-orged (Linker)

This psect has had its start address specified more than once.

416

Error and Warning Messages

"_mn

(437) missing in class spec (Linker)

A class spec needs an = sign, e.g. -Ctext=ROM See Section 5.7.9 for more information.

(438) bad size in -S option (Linker)

The address given in a -S specification is invalid: it should be a valid number, in decimal, octal or
hexadecimal radix. The radix is specified by a trailing O, for octal, or H for hex. A leading 0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,

e.g.
-SCODE=£000
Did you forget the radix?
-SCODE=£000h
(439) bad -D spec: "*" (Linker)
The format of a -D specification, giving a delta value to a class, is invalid, e.g.:
-DCODE
What is the delta value for this class? Maybe you meant something like:
-DCODE=2

(440) bad delta value in -D spec (Linker)

The delta value supplied to a -D specification is invalid. This value should an integer of base 8, 10
or 16.

(441) bad -A spec: "*" (Linker)
The format of a -A specification, giving address ranges to the linker, is invalid, e.g.:

—-ACODE
What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

417

Error and Warning Messages

(442) missing address in -A spec (Linker)
The format of a -2 specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE=
What is the range for this class? Maybe you meant:

—-ACODE=0h-1fffh

(443) bad low address "*'" in -A spec (Linker)

The low address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-ACODE=1fff-3fffh
Did you forget the radix?
-ACODE=1fffh-3fffh

(444) expected "-" in -A spec (Linker)

There should be a minus sign, -, between the high and low addresses in a -A linker option, e.g.
-AROM=1000h

maybe you meant:

—-AROM=1000h-1fffh

(445) bad high address "*" in -A spec (Linker)

The high address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O, for octal, or H for hex. A leading 0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,

e.g.
—-ACODE=0h-ffff

Did you forget the radix?
-ACODE=0h-ffffh

See Section 5.7.20 for more information.

418

Error and Warning Messages

(446) bad overrun address '"*" in -A spec (Linker)

The overrun address given in a -A specification is invalid: it should be a valid number, in decimal,
octal or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading
0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is
default, e.g.:

-AENTRY=0-0FFh-1FF
Did you forget the radix?

-AENTRY=0-0FFh-1FFh

(447) bad load address "*'" in -A spec (Linker)

The load address given in a -A specification is invalid: it should be a valid number, in decimal, octal
or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading 0x may
also be used for hexadecimal. Case in not important for any number or radix. Decimal is default,

e.g.:
-ACODE=0h-3£f£ffh/a000
Did you forget the radix?
-ACODE=0h-3fffh/a000h
(448) bad repeat count "*'" in -A spec (Linker)
The repeat count given in a -A specification is invalid, e.g.:
-AENTRY=0-0FFhxf
Did you forget the radix?
-AENTRY=0-0FFhxfh

(449) syntax error in -A spec: * (Linker)

The -2 spec is invalid. A valid -A spec should be something like:
-AROM=1000h-1FFFh

419

Error and Warning Messages

(450) psect "*'" was never defined (Linker, Optimiser)

This psect has been listed in a —P option, but is not defined in any module within the program.

(451) bad psect origin format in -P option (Linker)

The origin format in a -p option is not a validly formed decimal, octal or hex number, nor is it the
name of an existing psect. A hex number must have a trailing H, e.g.:

-pbss=£000
Did you forget the radix?
-pbss=£000h
(452) bad "+'" (minimum address) format in -P option (Linker)
The minimum address specification in the linker’s —p option is badly formatted, e.g.:
-pbss=data+£000
Did you forget the radix?
-pbss=data+£f000h

(453) missing number after "' %" in -P option (Linker)

The % operator in a —p option (for rounding boundaries) must have a number after it.

(454) link and load address can’t both be set to '."" in -P option (Linker)

The link and load address of a psect have both been specified with a dof character. Only one of these
addresses may be specified in this manner, e.g.:

-Pmypsect=1000h/.
-Pmypsect=./1000h

Both of these options are valid and equivalent, however the following usage is ambiguous:
-Pmypsect=./.

What is the link or load address of this psect?

420

Error and Warning Messages

(455) psect "*'" not relocated on 0x* byte boundary (Linker)

This psect is not relocated on the required boundary. Check the relocatability of the psect and correct
the —p option. if necessary.

(456) psect ""*" not loaded on 0x* boundary (Linker)

This psect has a relocatability requirement that is not met by the load address given in a —p option.
For example if a psect must be on a 4K byte boundary, you could not start it at 100H.

(459) remove failed, error: *, * (xstrip)

The creation of the output file failed when removing an interemediate file.

(460) rename failed, error: *, * (xstrip)

The creation of the output file failed when renaming an interemediate file.

(461) can’t create * file "'*" (Assembler, Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(464) missing key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(465) undefined symbol "*" in FNBREAK record (Linker)

The linker has found an undefined symbol in the FNBREAK record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

(466) wundefined symbol '*'" in FNINDIR record (Linker)

The linker has found an undefined symbol in the FNINDIR record for a non-reentrant function. Con-
tact HI-TECH Support if this is not handwritten assembler code.

(467) undefined symbol "*" in FNADDR record (Linker)

The linker has found an undefined symbol in the FNADDR record for a non-reentrant function.
Contact HI-TECH Support if this is not handwritten assembler code.

421

Error and Warning Messages

(468) undefined symbol "*'" in FNCALL record (Linker)

The linker has found an undefined symbol in the FNCALL record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(469) undefined symbol ""*' in FNROOT record (Linker)

The linker has found an undefined symbol in the FNROOT record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(470) undefined symbol '*'" in FNSIZE record (Linker)

The linker has found an undefined symbol in the FNSIZE record for a non-reentrant function. Contact
HI-TECH Support if this is not handwritten assembler code.

(471) recursive function calls: (Linker)

These functions (or function) call each other recursively. One or more of these functions has stat-
ically allocated local variables (compiled stack). Either use the reentrant keyword (if supported
with this compiler) or recode to avoid recursion, e.g.:

int test(int a)
{
if(a == 5) {
/* recursion may not be supported by some compilers */
return test (att);

}

return 0;

(472) non-reentrant function ''*'' appears in multiple call graphs: rooted at "*' and "'*"
(Linker)

This function can be called from both main-line code and interrupt code. Use the reentrant key-
word, if this compiler supports it, or recode to avoid using local variables or parameters, or duplicate
the function, e.g.:

void interrupt my_isr (void)

{

scan(6); /* scan is called from an interrupt function */

}

422

Error and Warning Messages

void process (int a)

{

scan(a); /* scan 1s also called from main-line code */

(473) function "*" is not called from specified interrupt_level (Linker)
The indicated function is never called from an interrupt function of the same interrupt level, e.g.:

#pragma interrupt_level 1
void foo (void)

{

}
#pragma interrupt_level 1
void interrupt bar (void)

{

// this function never calls foo ()

(474) no psect specified for function variable/argument allocation (Linker)
The FNCONF assembler directive which specifies to the linker information regarding the auto/parameter
block was never seen. This is supplied in the standard runtime files if necessary. This error may im-
ply that the correct run-time startup module was not linked. Ensure you have used the FNCONF
directive if the runtime startup module is hand-written.

(475) conflicting FNCONF records (Linker)
The linker has seen two conflicting FNCONF directives. This directive should only be specified once
and is included in the standard runtime startup code which is normally linked into every program.
(476) fixup overflow referencing * * (location 0x* (0x*+*), size *, value 0x*) (Linker)
The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.
See the following error message (477) for more information..

(477) fixup overflow in expression (location 0x* (0x*+%), size *, value 0x*) (Linker)

Fixup is the process conducted by the linker of replacing symbolic references to variables etc, in an
assembler instruction with an absolute value. This takes place after positioning the psects (program

423

Error and Warning Messages

sections or blocks) into the available memory on the target device. Fixup overflow is when the
value determined for a symbol is too large to fit within the allocated space within the assembler
instruction. For example, if an assembler instruction has an 8-bit field to hold an address and the
linker determines that the symbol that has been used to represent this address has the value 0x110,
then clearly this value cannot be inserted into the instruction.

The causes for this can be many, but hand-written assembler code is always the first suspect.
Badly written C code can also generate assembler that ultimately generates fixup overflow errors.
Consider the following error message.

main.obj: 8: Fixup overflow in expression (loc 0x1FD (0x1FC+1),
size 1, value 0x7FC)

This indicates that the file causing the problem was main.obj. This would be typically be the output
of compiling main.c or main.as. This tells you the file in which you should be looking. The next
number (8 in this example) is the record number in the object file that was causing the problem. If
you use the DUMP utility to examine the object file, you can identify the record, however you do not
normally need to do this.

The location (1oc) of the instruction (Ox1FD), the size (in bytes) of the field in the instruction
for the value (1), and the value which is the actual value the symbol represents, is typically the only
information needed to track down the cause of this error. Note that a size which is not a multiple of
8 bits will be rounded up to the nearest byte size, i.e. a 7 bit space in an instruction will be shown as
1 byte.

Generate an assembler list file for the appropriate module. Look for the address specified in the
error message.

7 07FC 0E21 movlw 33
8 07FD 6FFC movwf _foo
9 07FE 0012 return

and to confirm, look for the symbol referenced in the assembler instruction at this address in the
symbol table at the bottom of the same file.

Symbol Table Fri Aug 12 13:17:37 2004
_foo 01FC _main 07FF

In this example, the instruction causing the problem takes an 8-bit offset into a bank of memory, but
clearly the address Ox1FC exceeds this size. Maybe the instruction should have been written as:

movwf (_foo&0ffh)

424

Error and Warning Messages

which masks out the top bits of the address containing the bank information.

If the assembler instruction that caused this error was generated by the compiler, in the assem-
bler list file look back up the file from the instruction at fault to determine which C statement has
generated this instruction. You will then need to examine the C code for possible errors. incorrectly
qualified pointers are an common trigger.

(478) * range check failed (location 0x* (0x*+%), value 0x* > limit 0x*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(479) circular indirect definition of symbol "' *" (Linker)

The specified symbol has been equated to an external symbol which, in turn, has been equated to the
first symbol.

(480) function signatures do not match: * (*): 0x*/0x* (Linker)

The specified function has different signatures in different modules. This means it has been declared
differently, e.g. it may have been prototyped in one module and not another. Check what declarations
for the function are visible in the two modules specified and make sure they are compatible, e.g.:

extern int get_value(int in);

/* and in another module: */

/* this is different to the declaration */
int get_value(int in, char type)

{

(481) common symbol "*" psect conflict (Linker)

A common symbol has been defined to be in more than one psect.

(482) symbol "*'" is defined more than once in "*" (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

_next:
move r0, #55
move [rl], r0
_next: ; oops —-- choose a different name

425

Error and Warning Messages

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have an underscore prepended to their name after compilation.

(483) symbol "*'" can’t be global (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(484) psect "*'" can’t be in classes ""*'" and ""*"' (Linker)

A psect cannot be in more than one class. This is either due to assembler modules with conflicting
class= options to the PSECT directive, or use of the -C option to the linker, e.g.:

psect final,class=CODE
finish:
/* elsewhere: */
psect final,class=ENTRY
(485) unknown "with'" psect referenced by psect '*" (Linker)

The specified psect has been placed with a psect using the psect with flag. The psect it has been
placed with does not exist, e.g.:

psect starttext,class=CODE,with=rext
; was that meant to be with text?
(486) psect "*'" selector value redefined (Linker)

The selector value for this psect has been defined more than once.

(487) psect '"*'" type redefined: */* (Linker)

This psect has had its type defined differently by different modules. This probably means you are
trying to link incompatible object modules, e.g. linking 386 flat model code with 8086 real mode
code.

(488) psect ''*'"' memory space redefined: */* (Linker)
A global psect has been defined in two different memory spaces. Either rename one of the psects or,

if they are the same psect, place them in the same memory space using the space psect flag, e.g.:

426

Error and Warning Messages

psect spdata,class=RAM, space=0
ds 6

; elsewhere:

psect spdata,class=RAM, space=1

(489) psect "*'" memory delta redefined: */* (Linker)

A global psect has been defined with two different delta values, e.g.:

psect final,class=CODE,delta=2
finish:

; elsewhere:

psect final,class=CODE,delta=1

(490) class "*'" memory space redefined: */* (Linker)

A class has been defined in two different memory spaces. Either rename one of the classes or, if they
are the same class, place them in the same memory space.

(491) can’t find 0x* words for psect ''*" in segment "'*"' (Linker)

One of the main tasks the linker performs is positioning the blocks (or psects) of code and data that
is generated from the program into the memory available for the target device. This error indicates
that the linker was unable to find an area of free memory large enough to accommodate one of the
psects. The error message indicates the name of the psect that the linker was attempting to position
and the segment name which is typically the name of a class which is defined with a linker -2 option.

Section 3.8.1 lists each compiler-generated psect and what it contains. Typically psect names
which are, or include, text relate to program code. Names such as bss or data refer to variable
blocks. This error can be due to two reasons.

First, the size of the program or the program’s data has exceeded the total amount of space on
the selected device. In other words, some part of your device’s memory has completely filled. If this
is the case, then the size of the specified psect must be reduced.

The second cause of this message is when the total amount of memory needed by the psect being
positioned is sufficient, but that this memory is fragmented in such a way that the largest contiguous
block is too small to accommodate the psect. The linker is unable to split psects in this situation.
That is, the linker cannot place part of a psect at one location and part somewhere else. Thus, the
linker must be able to find a contiguous block of memory large enough for every psect. If this is the
cause of the error, then the psect must be split into smaller psects if possible.

To find out what memory is still available, generate and look in the map file, see Section 2.6.9 for
information on how to generate a map file. Search for the string UNUSED ADDRESS RANGES. Under

427

Error and Warning Messages

this heading, look for the name of the segment specified in the error message. If the name is not
present, then all the memory available for this psect has been allocated. If it is present, there will be
one address range specified under this segment for each free block of memory. Determine the size
of each block and compare this with the number of words specified in the error message.

Psects containing code can be reduced by using all the compiler’s optimizations, or restructuring
the program. If a code psect must be split into two or more small psects, this requires splitting a
function into two or more smaller functions (which may call each other). These functions may need
to be placed in new modules.

Psects containing data may be reduced when invoking the compiler optimizations, but the effect
is less dramatic. The program may need to be rewritten so that it needs less variables. Section
4.4.4 has information on interpreting the map file’s call graph if the compiler you are using uses
a compiled stack. (If the string Call graph: is not present in the map file, then the compiled
code uses a hardware stack.) If a data psect needs to be split into smaller psects, the definitions
for variables will need to be moved to new modules or more evenly spread in the existing modules.
Memory allocation for auto variables is entirely handled by the compiler. Other than reducing the
number of these variables used, the programmer has little control over their operation. This applies
whether the compiled code uses a hardware or compiled stack.

For example, after receiving the message:

Can’t find 0x34 words (0x34 withtotal) for psect text
in segment CODE (error)

look in the map file for the ranges of unused memory.

UNUSED ADDRESS RANGES

CODE 00000244-0000025F
00001000-0000102£
RAM 00300014-00301FFB

In the CODE segment, there is Ox1c (0x25f-0x244+1) bytes of space available in one block and 0x30
available in another block. Neither of these are large enough to accommodate the psect text which
is 0x34 bytes long. Notice, however, that the total amount of memory available is larger than 0x34
bytes.

(492) attempt to position absolute psect '"*'" is illegal (Linker)

This psect is absolute and should not have an address specified in a -P option. Either remove the
abs psect flag, or remove the -P linker option.

428

Error and Warning Messages

(493) origin of psect "*'" is defined more than once (Linker)

The origin of this psect is defined more than once. There is most likely more than one -p linker
option specifying this psect.

(494) bad -P format "'*/*" (Linker)

The -P option given to the linker is malformed. This option specifies placement of a psect, e.g.:
-Ptext=10g0h

Maybe you meant:

-Ptext=10£0h

(495) use of both "with=""and "INCLASS/INCLASS" allocation is illegal (Linker)

It is not legal to specify both the link and location of a psect as within a class, when that psect was
also defined using a with psect flag.

(497) psect "*'" exceeds max size: *h > *h (Linker)

The psect has more bytes in it than the maximum allowed as specified using the size psect flag.

(498) psect "*'" exceeds address limit: *h > *h (Linker)

The maximum address of the psect exceeds the limit placed on it using the 1imit psect flag. Either
the psect needs to be linked at a different location or there is too much code/data in the psect.

(499) undefined symbol: (Assembler, Linker)

The symbol following is undefined at link time. This could be due to spelling error, or failure to link
an appropriate module.

(500) wundefined symbols: (Linker)

A list of symbols follows that were undefined at link time. These errors could be due to spelling
error, or failure to link an appropriate module.

429

Error and Warning Messages

(501) program entry point is defined more than once (Linker)

There is more than one entry point defined in the object files given the linker. End entry point is
specified after the END directive. The runtime startup code defines the entry point, e.g.:

powerup:

goto start

END powerup ; end of file and define entry point

; other files that use END should not define another entry point

(502) incomplete * record body: length = * (Linker)
An object file contained a record with an illegal size. This probably means the file is truncated or
not an object file. Contact HI-TECH Support with details.
(503) ident records do not match (Linker)
The object files passed to the linker do not have matching ident records. This means they are for
different processor types.
(504) object code version is greater than *.* (Linker)

The object code version of an object module is higher than the highest version the linker is known
to work with. Check that you are using the correct linker. Contact HI-TECH Support if the object
file if you have not patched the linker.

(505) no end record found inobject file (Linker)

An object file did not contain an end record. This probably means the file is corrupted or not an
object file. Contact HI-TECH Support if the object file was generated by the compiler.

(506) object file record too long: *+* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(507) unexpected end of file in object file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(508) relocation offset (*) out of range 0..%-*-1 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

430

Error and Warning Messages

(509) illegal relocation size: * (Linker)

There is an error in the object code format read by the linker. This either means you are using
a linker that is out of date, or that there is an internal error in the assembler or linker. Contact
HI-TECH Support with details if the object file was created by the compiler.

(510) complex relocation not supported for -R or -L options (Linker)

The linker was given a -R or -L option with file that contain complex relocation.

(511) bad complex range check (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(512) unknown complex operator 0x* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(513) bad complex relocation (Linker)

The linker has been asked to perform complex relocation that is not syntactically correct. Probably
means an object file is corrupted.

(514) illegal relocation type: * (Linker)

An object file contained a relocation record with an illegal relocation type. This probably means the
file is corrupted or not an object file. Contact HI-TECH Support with details if the object file was
created by the compiler.

(515) unknown symbol type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(516) text record has bad length: *-*-(*+1) < 0 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

431

Error and Warning Messages

(520) function "*" is never called (Linker)

This function is never called. This may not represent a problem, but space could be saved by remov-
ing it. If you believe this function should be called, check your source code. Some assembler library
routines are never called, although they are actually execute. In this case, the routines are linked in
a special sequence so that program execution falls through from one routine to the next.

call depth exceeded by function inker
(521) call depth ded by function "*" (Linker)

The call graph shows that functions are nested to a depth greater than specified.

(522) library "*" is badly ordered (Linker)

This library is badly ordered. It will still link correctly, but it will link faster if better ordered.

(523) argument to -W option (*) illegal and ignored (Linker)
The argument to the linker option -w is out of range. This option controls two features. For warning
levels, the range is -9 to 9. For the map file width, the range is greater than or equal to 10.

(524) unable to open list file "*'': * (Linker)
The named list file could not be opened. The linker would be trying to fixup the list file so that it will
contain absolute addresses. Ensure that an assembler list file was generated during the compilation
stage. Alternatively, remove the assembler list file generation option from the link step.

(525) too many address (memory) spaces; space (*) ignored (Linker)
The limit to the number of address spaces (specified with the PSECT assembler directive) is currently
16.

(526) psect "*'" not specified in -P option (first appears in "'*'") (Linker)
This psect was not specified in a -P or -A option to the linker. It has been linked at the end of the
program, which is probably not where you wanted it.

(528) no start record; entry point defaults to zero (Linker)

None of the object files passed to the linker contained a start record. The start address of the program
has been set to zero. This may be harmless, but it is recommended that you define a start address in
your startup module by using the END directive.

432

Error and Warning Messages

(529) wusage: objtohex [-Ssymfile] [object-file [hex-file]] (Objtohex)
Improper usage of the command-line tool objtohex. If you are invoking objtohex directly then
please refer to Section 5.11 for more details. Otherwise this may be an internal compiler error and
you should contact HI-TECH Software technical support with details.

(593) can’t find Ox* words (0x* withtotal) for psect ''*'"" in segment "'*" (Linker)

See error (491) on Page 427.

(594) undefined symbol: (Linker)
The symbol following is undefined at link time. This could be due to spelling error, or failure to link
an appropriate module.

(595) undefined symbols: (Linker)
A list of symbols follows that were undefined at link time. These errors could be due to spelling
error, or failure to link an appropriate module.

(596) segment "*'" (*-*) overlaps segment ''*"' (*-%) (Linker)
The named segments have overlapping code or data. Check the addresses being assigned by the -P
linker option.

(599) No psect classes given for COFF write (Cromwell)
Cromwell requires that the program memory psect classes be specified to produce a COFF file.
Ensure that you are using the -N option as per Section 5.13.2.

(600) No chip arch given for COFF write (Cromwell)
Cromwell requires that the chip architecture be specified to produce a COFF file. Ensure that you
are using the -P option as per Section 5.13.1.

(601) Unknown chip arch "*" for COFF write (Cromwell)

The chip architecture specified for producing a COFF file isn’t recognised by Cromwell. Ensure that
you are using the -P option as per Section 5.13.1 and that the architecture specified matches one of
those in Table 5.8.

433

Error and Warning Messages

(602) null file format name (Cromwell)

The -I or -0 option to Cromwell must specify a file format.

(603) ambiguous file format name ''*" (Cromwell)

The input or output format specified to Cromwell is ambiguous. These formats are specified with
the -ikey and -okey options respectively.

(604) unknown file format name "'*"' (Cromwell)
The output format specified to CROMWELL is unknown, e.g.:

cromwell -m -P16F877 main.hex main.sym -ocot
and output file type of cot, did you mean cof?

(605) did not recognize format of input file (Cromwell)

The input file to Cromwell is required to be COD, Intel HEX, Motorola HEX, COFF, OMF51, P&E
or HI-TECH.

(606) inconsistent symbol tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(607) inconsistent line number tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(608) bad path specification (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(609) missing processor spec after -P (Cromwell)

The -p option to cromwell must specify a processor name.

(610) missing psect classes after -N (Cromwell)

Cromwell requires that the -N option be given a list of the names of psect classes.

434

Error and Warning Messages

(611) too many input files (Cromwell)

To many input files have been specified to be converted by CROMWELL.

(612) too many output files (Cromwell)

To many output file formats have been specified to CROMWELL.

(613) no output file format specified (Cromwell)
The output format must be specified to CROMWELL.

(614) no input files specified (Cromwell)
CROMWELL must have an input file to convert.

(616) option -Cbaseaddr is illegal with options -R or -L (Linker)

The linker option -Cbaseaddr cannot be used in conjunction with either the -R or -L linker options.

(618) error reading COD file data (Cromwell)

An error occurred reading the input COD file. Confirm the spelling and path of the file specified on
the command line.

(619) 1/O error reading symbol table (Cromwell)

The COD file has an invalid format in the specified record.

(620) filename index out of range in line number record (Cromwell)

The COD file has an invalid value in the specified record.

(621) error writing ELF/DWARF section ''*'' on "'*" (Cromwell)

An error occurred writing the indicated section to the given file. Confirm the spelling and path of
the file specified on the command line.

(622) too many type entries (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

435

Error and Warning Messages

(623) bad class in type hashing (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(624) bad class in type compare (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(625) too many files in COFF file (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(626) string lookup failed in COFF: get_string() (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(627) missing "'*'" in SDB file ""*'' line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(629) bad storage class ""*'' in SDB file ''*'" line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(630) invalid syntax for prefix list in SDB file ''*" (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(631) syntax error at token ''*'" in SDB file ''*" line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(632) can’t handle address size (*) (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(633) unknown symbol class (*) (Cromwell)

Cromwell has encountered a symbol class in the symbol table of a COFF, Microchip COFF, or
ICOFF file which it can’t identify.

436

Error and Warning Messages

(634) error dumping "'*" (Cromwell)
Either the input file to CROMWELL is of an unsupported type or that file cannot be dumped to the
screen.

(635) invalid HEX file ''*'"" on line * (Cromwell)
The specified HEX file contains an invalid line. Contact HI-TECH Support if the HEX file was
generated by the compiler.

(636) checksum error in Intel HEX file ''*'' on line * (Cromwell, Hexmate)
A checksum error was found at the specified line in the specified Intel hex file. The HEX file may
be corrupt.

(637) unknown prefix ""*'" in SDB file "'*" (Cromwell)

This is an internal compiler warning. Contact HI-TECH Software technical support with details.

(638) version mismatch: 0x* expected (Cromwell)

The input Microchip COFF file wasn’t produced using Cromwell.

(639) zero bit width in Microchip optional header (Cromwell)

The optional header in the input Microchip COFF file indicates that the program or data memory
spaces are zero bits wide.

(668) prefix list did not match any SDB types (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(669) prefix list matched more than one SDB type (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(670) bad argument to -T (Clist)

The argument to the -T option to specify tab size was not present or correctly formed. The option
expects a decimal interger argument.

437

Error and Warning Messages

(671) argument to -T should be in range 1 to 64 (Clist)

The argument to the -T option to specify tab size was not in the expected range. The option expects
a decimal interger argument ranging from 1 to 64 inclusive.

(673) missing filename after * option (Objtohex)

The indicated option requires a valid file name. Ensure that the filename argument supplied to this
option exists and is spelt correctly.

(674) too many references to ''*"' (Cref)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(679) unknown extraspecial: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(680) bad format for -P option (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(682) this architecture is not supported by the PICC Lite compiler (Code Generator)

A target device other than baseline, midrange or highend was specified. This compiler only supports
devices from these architecture families.

(683) bank 1 variables are not supported by the PICC Lite compiler (Code Generator)

A variable with an absolute address located in bank 1 was detected. This compiler does not support
code generation of variables in this bank.

(684) bank 2 and 3 variables are not supported by the PICC Lite compiler (Code Generator)

A variable with an absolute address located in bank 2 or 3 was detected. This compiler does not
support code generation of variables in these banks.

(685) bad putwsize() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

438

Error and Warning Messages

(686) bad switch size (*) (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(687) bad pushreg "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See
Section 5.7.2 for more information.

(688) bad popreg "'*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(689) unknown predicate '"*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(693) interrupt level may only be 0 (default) or 1 (Code Generator)

The only possible interrupt levels are O or 1. Check to ensure that all interrupt_level pragmas
use these levels.

#pragma interrupt_level 2 /* oops -- only 0 or 1 */
void interrupt isr(void)
{

/* isr code goes here */

}

(695) duplicate case label (*) (Code Generator)

There are two case labels with the same value in this switch statement, e.g.:

switch(in) {

case '0': /* if this is case '0’'... */
b++;
break;

case '0’: /* then what is this case? */
b-——;
break;

}

439

Error and Warning Messages

(696) out-of-range case label (*) (Code Generator)
This case label is not a value that the controlling expression can yield, and thus this label will never
be selected.

(697) non-constant case label (Code Generator)

A case label in this switch statement has a value which is not a constant.

(698) bit variables must be global or static (Code Generator)

A bit variable cannot be of type auto. If you require a bit variable with scope local to a block of
code or function, qualify it static, e.g.:

bit proc(int a)

{
bit bb; /* oops -- this should be: static bit bb; */
bb = (a > 66);
return bb;

(699) no case labels in switch (Code Generator)

There are no case labels in this switch statement, e.g.:

switch (input) {
} /* there is nothing to match the value of input */

(700) truncation of enumerated value (Code Generator)

An enumerated value larger than the maximum value supported by this compiler was detected and
has been truncated, e.g.:

enum { ZERO, ONE, BIG=0x99999999 } test_case;

(701) unreasonable matching depth (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(702) regused(): bad arg to G (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

440

Error and Warning Messages

(703) bad GN (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See
Section 5.7.2 for more information.

(704) bad RET_MASK (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(705) bad which (*) after 1 (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(706) bad which in expand() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(707) bad SX (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(708) bad mod "'+'" for how = ""*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(709) metaregister "*'' can’t be used directly (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(710) bad U usage (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(711) bad how in expand() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

441

Error and Warning Messages

(712) can’t generate code for this expression (Code Generator)

This error indicates that a C expression is too difficult for the code generator to actually compile. For
successful code generation, the code generator must know how to compile an expression and there
must be enough resources (e.g. registers or temporary memory locations) available. Simplifying
the expression, e.g. using a temporary variable to hold an intermediate result, may get around this
message. Contact HI-TECH Support with details of this message.

This error may also be issued if the code being compiled is in some way unusual. For example
code which writes to a const-qualified object is illegal and will result in warning messages, but the
code generator may unsuccessfully try to produce code to perform the write.

(713) bad initialization list (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(714) bad intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(715) bad pragma "'*" (Code Generator)
The code generator has been passed a pragma directive that it does not understand. This implies that
the pragma you have used is a HI-TECH specific pragma, but the specific compiler you are using
has not implemented this pragma.

(716) bad argument to -M option "'*"' (Code Generator)
The code generator has been passed a -M option that it does not understand. This should not happen
if it is being invoked by a standard compiler driver.

(718) incompatible intermediate code version; should be *.* (Code Generator)

The intermediate code file produced by P1 is not the correct version for use with this code generator.
This is either that incompatible versions of one or more compilers have been installed in the same
directory, or a temporary file error has occurred leading to corruption of a temporary file. Check the
setting of the TEMP environment variable. If it refers to a long path name, change it to something
shorter. Contact HI-TECH Support with details if required.

(720) multiple free: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

442

Error and Warning Messages

(721) element count must be constant expression (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(722) bad variable syntax in intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(723) function definitions nested too deep (Code Generator)

This error is unlikely to happen with C code, since C cannot have nested functions! Contact HI-
TECH Support with details.

(724) bad op (*) in revlog() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(726) bad op '""*'" in uconval() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(727) bad op "*" in bconfloat() (Code Generator)

This is an internal code generator error. Contact HI-TECH technical support with details.

(728) bad op "*" in confloat() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(729) bad op "*" in conval() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(730) bad op "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(731) expression error with reserved word (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

443

Error and Warning Messages

(732) initialization of bit types is illegal (Code Generator)

Variables of type bit cannot be initialised, e.g.:

bit bl = 1; /* oops!
bl must be assigned after its definition */

(733) bad string "*'" in pragma ''psect'' (Code Generator)
The code generator has been passed a pragma psect directive that has a badly formed string, e.g.:
#pragma psect text /* redirect text psect into what? */
Maybe you meant something like:
#pragma psect text=special_text

(734) too many ''psect'' pragmas (Code Generator)

Too many #pragma psect directives have been used.

(735) bad string "*" in pragma ''stack_size" (Code Generator)

The argument to the stack_size pragma is malformed. This pragma must be followed by a number
representing the maximum allowed stack size.

(737) unknown argument "*'' to pragma "'switch" (Code Generator)

The #pragma switch directive has been used with an invalid switch code generation method. Pos-
sible arguments are: auto, simple and direct.

(739) error closing output file (Code Generator, Optimiser)

The compiler detected an error when closing a file. Contact HI-TECH Support with details.

(740) zero dimension array is illegal (Code Generator)

The code generator has been passed a declaration that results in an array having a zero dimension.

444

Error and Warning Messages

(741) bitfield too large (* bits) (Code Generator)

The maximum number of bits in a bit field is the same as the number of bits in an int, e.g. assuming
an int is 16 bits wide:

struct {
unsigned flag : 1;
unsigned value : 12;

unsigned cont : 6; /* oops -- that’s a total of 19 bits */
} object;

(742) function "*'" argument evaluation overlapped (Linker)

A function call involves arguments which overlap between two functions. This could occur with a
call like:

void fnl (void)
{
fn3(7, ftn2(3), fn2(9)); /* Offending call */
}
char fn2 (char fred)

{
return fred + fn3(5,1,0);
}
char fn3(char one, char two, char three)
{

return one+two+three;

where fnl is calling £n3, and two arguments are evaluated by calling £n2, which in turn calls £n3.
The program structure should be modified to prevent this type of call sequence.

(743) divide by zero (Code Generator)

An expression involving a division by zero has been detected in your code.

(744) static object "'*'" has zero size (Code Generator)

A static object has been declared, but has a size of zero.

445

Error and Warning Messages

(745) nodecount = * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(746) object ""*'" qualified const, but not initialized (Code Generator)

An object has been qualified as const, but there is no initial value supplied at the definition. As this
object cannot be written by the C program, this may imply the intial value was accidently omitted.

(747) unrecognized option "'*'" to -Z (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(748) variable ''*'"" may be used before set (Code Generator)

This variable may be used before it has been assigned a value. Since it is an auto variable, this will
result in it having a random value, e.g.:

void main (void)
{
int a;
if (a) /* oops -- a has never been assigned a value */
process();

(749) unknown register name ''*'' used with pragma (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(750) constant operand to Il or && (Code Generator)

One operand to the logical operators | | or && is a constant. Check the expression for missing or
badly placed parentheses. This message may also occur if the global optimizer is enabled and one of
the operands is an auto or static local variable whose value has been tracked by the code generator,

e.g.
{

int a;

a = 6;

if(a || b) /* a is 6, therefore this is always true */
bt+;

446

Error and Warning Messages

(751) arithmetic overflow in constant expression (Code Generator)

A constant expression has been evaluated by the code generator that has resulted in a value that is
too big for the type of the expression. The most common code to trigger this warning is assignments
to signed data types. For example:

signed char c;
c = 0xFF;

As a signed 8-bit quantity, c can only be assigned values -128 to 127. The constant is equal to 255
and is outside this range. If you mean to set all bits in this variable, then use either of:

~0x0;
c = -1;

which will set all the bits in the variable regardless of the size of the variable and without warning.
This warning can also be triggered by intermediate values overflowing. For example:

unsigned int i; /* assume ints are 16 bits wide */
i = 240 * 137; /* this should be okay, right? */

A quick check with your calculator reveals that 240 * 137 is 32880 which can easily be stored in
an unsigned int, but a warning is produced. Why? Because 240 and 137 and both signed int
values. Therefore the result of the multiplication must also be a signed int value, but a signed
int cannot hold the value 32880. (Both operands are constant values so the code generator can
evaluate this expression at compile time, but it must do so following all the ANSI rules.) The
following code forces the multiplication to be performed with an unsigned result:

i = 240u * 137; /* force at least one operand
to be unsigned */

(752) conversion to shorter data type (Code Generator)

Truncation may occur in this expression as the Ivalue is of shorter type than the rvalue, e.g.:

char aj;
int b, c¢;
a=Db+ c; /* int to char conversion
may result in truncation */

447

Error and Warning Messages

(753) undefined shift (* bits) (Code Generator)

An attempt has been made to shift a value by a number of bits equal to or greater than the number of
bits in the data type. This will produce an undefined result on many processors. This is non-portable
code and is flagged as having undefined results by the C Standard, e.g.:

int input;
input <<= 33; /* oops -- that shifts the entire value out */

(754) bitfield comparison out of range (Code Generator)

This is the result of comparing a bitfield with a value when the value is out of range of the bitfield.
For example, comparing a 2-bit bitfield to the value 5 will never be true as a 2-bit bitfield has a range
from O to 3, e.g.:

struct {
unsigned mask : 2; /* mask can hold values 0 to 3 */
} value;
int compare (void)
{
return (value.mask == 6); /* test can

}

(755) divide by zero (Code Generator)

A constant expression that was being evaluated involved a division by zero, e.g.:

a /= 0; /* divide by 0: was this what you were intending */

(757) constant conditional branch (Code Generator)

A conditional branch (generated by an if, for, while statement etc.) always follows the same path.
This will be some sort of comparison involving a variable and a constant expression. For the code
generator to issue this message, the variable must have local scope (either auto or static local) and
the global optimizer must be enabled, possibly at higher level than 1, and the warning level threshold
may need to be lower than the default level of 0.

The global optimizer keeps track of the contents of local variables for as long as is possible during
a function. For C code that compares these variables to constants, the result of the comparison can
be deduced at compile time and the output code hard coded to avoid the comparison, e.g.:

448

Error and Warning Messages

int a, b;
a = 5;
/* this can never be false;
always perform the true statement */
if(a == 4)
b = 6;

will produce code that sets a to 5, then immediately sets b to 6. No code will be produced for the
comparison if (a == 4). If a was a global variable, it may be that other functions (particularly
interrupt functions) may modify it and so tracking the variable cannot be performed.

This warning may indicate more than an optimization made by the compiler. It may indicate an
expression with missing or badly placed parentheses, causing the evaluation to yield a value different
to what you expected.

This warning may also be issued because you have written something like while (1). To produce
an infinite loop, use for (; ;).

A similar situation arises with for loops, e.g.:

{
int a, b;
/* this loop must iterate at least once */
for (a=0; a!=10; a++)
b = func(a);

In this case the code generator can again pick up that a is assigned the value O, then immediately
checked to see if it is equal to 10. Because a is modified during the for loop, the comparison
code cannot be removed, but the code generator will adjust the code so that the comparison is not
performed on the first pass of the loop; only on the subsequent passes. This may not reduce code
size, but it will speed program execution.

(758) constant conditional branch: possible use of ''="" instead of ''=="" (Code Generator)

There is an expression inside an 1f or other conditional construct, where a constant is being assigned
to a variable. This may mean you have inadvertently used an assignment = instead of a compare ==,

e.g.

int a, b;
/* this can never be false;
always perform the true statement */
if(a = 4)
b = 6;

449

Error and Warning Messages

will assign the value 4 to a, then , as the value of the assignment is always true, the comparison can
be omitted and the assignment to b always made. Did you mean:

/* this can never be false;

always perform the true statement */
if(a == 4)

b = 6;

which checks to see if a is equal to 4.

(759) expression generates no code (Code Generator)

This expression generates no output code. Check for things like leaving off the parentheses in a
function call, e.g.:

int fred;
fred; /* this is valid, but has no effect at all */

Some devices require that special function register need to be read to clear hardware flags. To
accommodate this, in some instances the code generator does produce code for a statement which
only consists of a variable ID. This may happen for variables which are qualified as volatile.
Typically the output code will read the variable, but not do anything with the value read.

(760) portion of expression has no effect (Code Generator)

Part of this expression has no side effects, and no effect on the value of the expression, e.g.:

int a, b, c;
a =Db,c; /* “b” has no effect,
was that meant to be a comma? */

(761) sizeof yields 0 (Code Generator)

The code generator has taken the size of an object and found it to be zero. This almost certainly
indicates an error in your declaration of a pointer, e.g. you may have declared a pointer to a zero
length array. In general, pointers to arrays are of little use. If you require a pointer to an array of
objects of unknown length, you only need a pointer to a single object that can then be indexed or
incremented.

450

Error and Warning Messages

(762) constant truncated when assigned to bitfield (Code Generator)

A constant value is too large for a bitfield structure member to which it is being assigned, e.g.

struct INPUT {
unsigned a : 3;
unsigned b : 5;
} input_grp;
input_grp.a = 0x12;
/* 12h cannot fit into a 3-bit wide object */

(763) constant left operand to ''? :'"' operator (Code Generator)

The left operand to a conditional operator ? is constant, thus the result of the tertiary operator ?:
will always be the same, e.g.:

a=87?Db:c; /* this is the same as saying a = b; */

(764) mismatched comparison (Code Generator)

A comparison is being made between a variable or expression and a constant value which is not in
the range of possible values for that expression, e.g.:

unsigned char c;

if(c > 300) /* oops -- how can this be true? */
close();
(765) degenerate unsigned comparison (Code Generator)

There is a comparison of an unsigned value with zero, which will always be true or false, e.g.:

unsigned char c;
if(c >= 0)

will always be true, because an unsigned value can never be less than zero.

(766) degenerate signed comparison (Code Generator)

There is a comparison of a signed value with the most negative value possible for this type, such
that the comparison will always be true or false, e.g.:

451

Error and Warning Messages

char c;
if(c >= -128)

will always be true, because an 8 bit signed char has a maximum negative value of -128.

(767) constant truncated to bitfield width (Code Generator)

A constant value is too large for a bitfield structure member on which it is operating, e.g.

struct INPUT {
unsigned a : 3;
unsigned b : 5;
} input_grp;
input_grp.a |= 0x13;
/* 13h to large for 3-bit wide object */

(768) constant relational expression (Code Generator)

There is a relational expression that will always be true or false. This may be because e.g. you are
comparing an unsigned number with a negative value, or comparing a variable with a value greater
than the largest number it can represent, e.g.:

unsigned int a;
if(a == -10) /* if a is unsigned, how can it be -10? */
b =9;
(769) no space for macro definition (Assembler)

The assembler has run out of memory.

(772) include files nested too deep (Assembler)
Macro expansions and include file handling have filled up the assembler’s internal stack. The maxi-
mum number of open macros and include files is 30.

(773) macro expansions nested too deep (Assembler)

Macro expansions in the assembler are nested too deep. The limit is 30 macros and include files
nested at one time.

452

Error and Warning Messages

(774) too many macro parameters (Assembler)

There are too many macro parameters on this macro definition.

(776) can’t allocate space for object '"*'" (offs: *) (Assembler)

The assembler has run out of memory.

(777) can’t allocate space for opnd structure within object ''*'", (offs: *) (Assembler)

The assembler has run out of memory.

(780) too many psects defined (Assembler)

There are too many psects defined! Boy, what a program!

(781) can’t enter abs psect (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(782) REMSYM error (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(783) '"with'" psects are cyclic (Assembler)

If Psect A is to be placed “with” Psect B, and Psect B is to be placed “with” Psect A, there is no
hierarchy. The with flag is an attribute of a psect and indicates that this psect must be placed in the
same memory page as the specified psect.

Remove a with flag from one of the psect declarations. Such an assembler declaration may look

like:
psect my_text, local,class=CODE,with=basecode
which will define a psect called my_text and place this in the same page as the psect basecode.

(784) overfreed (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

453

Error and Warning Messages

(785) too many temporary labels (Assembler)

There are too many temporary labels in this assembler file. The assembler allows a maximum of
2000 temporary labels.

(787) can’t handle "v_rtype'" of * in copyexpr (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(788) invalid character "*" in number (Assembler)

A number contained a character that was not part of the range 0-9 or 0-F.

(790) end of file inside conditional (Assembler)

END-of-FILE was encountered while scanning for an "endif" to match a previous "if".

(793) unterminated macro argument (Assembler)

An argument to a macro is not terminated. Note that angle brackets ("< >") are used to quote macro
arguments.

(794) invalid number syntax (Assembler, Optimiser)

The syntax of a number is invalid. This can be, e.g. use of 8 or 9 in an octal number, or other
malformed numbers.

(796) use of LOCAL outside macros is illegal (Assembler)
The LOCAL directive is only legal inside macros. It defines local labels that will be unique for each
invocation of the macro.

(797) syntax error in LOCAL argument (Assembler)

A symbol defined using the LOCAL assembler directive in an assembler macro is syntactically incor-
rect. Ensure that all symbols and all other assembler identifiers conform with the assembly language
of the target device.

454

Error and Warning Messages

(798) macro argument may not appear after LOCAL (Assembler)

The list of labels after the directive LOCAL may not include any of the formal parameters to the
macro, e.g.:

mmm macro al
move r0, #al
LOCAL al ; oops --
; the macro parameter cannot be used with local
ENDM

(799) REPT argument must be >= 0 (Assembler)

The argument to a REPT directive must be greater than zero, e.g.:

rept -2 ; -2 copies of this code? */
move r0, [rl]++
endm
(800) wundefined symbol "'*" (Assembler)

The named symbol is not defined in this module, and has not been specified GLOBAL.

(801) range check too complex (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(802) invalid address after END directive (Assembler)
The start address of the program which is specified after the assembler END directive must be a label
in the current file.

(803) undefined temporary label (Assembler)
A temporary label has been referenced that is not defined. Note that a temporary label must have a
number >= 0.

(804) write error on object file (Assembler)
The assembler failed to write to an object file. This may be an internal compiler error. Contact

HI-TECH Software technical support with details.

455

Error and Warning Messages

(805) non-whitespace ignored after END directive (Assembler)

The END directive, if used, indicates the end of the source file. If there are non-whitespace characters
after the END directive, then the directive is does actually mark the end of the file.

(806) attempted to get an undefined object (¥) (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(807) attempted to set an undefined object (*) (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(808) bad size in add_reloc() (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(809) unknown addressing mode (*) (Assembler, Optimiser)

An unknown addressing mode was used in the assembly file.

(811) "cnt" too large (*) in display() (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(814) processor type not defined (Assembler)
The processor must be defined either from the command line (eg. -16c84), via the PROCESSOR
assembler directive, or via the LIST assembler directive.

(815) syntax error in chipinfo file at line * (Assembler)

The chipinfo file contains non-standard syntax at the specified line.

(816) duplicate ARCH specification in chipinfo file '"*'" at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(817) unknown architecture in chipinfo file at line * (Assembler, Driver)

An chip architecture (family) that is unknown was encountered when reading the chip INI file.

456

Error and Warning Messages

(818) duplicate BANKS for "*'" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple BANKS values. Only one BANKS value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(819) duplicate ZEROREG for ''*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ZEROREG values. Only one ZEROREG
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

(820) duplicate SPAREBIT for "*" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple SPAREBIT values. Only one SPAREBIT
value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with
details.

(822) duplicate ROMSIZE for '"*'" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple ROMSIZE values. Only one ROMSIZE value
is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.
(823) duplicate START for '*" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple START values. Only one START value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.
(824) duplicate LIB for ''*" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple LIB values. Only one LIB value is allowed.
If you have not manually edited the chip info file, contact HI-TECH Support with details.

(825) too many RAMBANK lines in chipinfo file for '*" (Assembler)
The chipinfo file contains a processor section with too many RAMBANK fields. Reduce the number
of values.

(826) inverted ram bank in chipinfo file at line * (Assembler, Driver)
The second hex number specified in the RAM field in the chipinfo file must be greater in value than

the first.

457

Error and Warning Messages

(827) too many COMMUON lines in chipinfo file for " *" (Assembler)

There are too many lines specifying common (access bank) memory in the chip configuration file.

(828) inverted common bank in chipinfo file at line * (Assembler, Driver)
The second hex number specified in the COMMON field in the chipinfo file must be greater in value
than the first. Contact HI-TECH Support if you have not modified the chipinfo INI file.

(829) unrecognized line in chipinfo file at line * (Assembler)
The chipinfo file contains a processor section with an unrecognised line. Contact HI-TECH Support
if the INI has not been edited.

(830) missing ARCH specification for '"*" in chipinfo file (Assembler)
The chipinfo file has a processor section without an ARCH values. The architecture of the processor
must be specified. Contact HI-TECH Support if the chipinfo file has not been modified.

(832) empty chip info file "*" (Assembler)
The chipinfo file contains no data. If you have not manually edited the chip info file, contact HI-
TECH Support with details.

(833) no valid entries in chipinfo file (Assembler)

The chipinfo file contains no valid processor descriptions.

(834) page width must be >= 60 (Assembler)

The listing page width must be at least 60 characters. Any less will not allow a properly formatted
listing to be produced, e.g.:

LIST C=10 ; the page width will need to be wider than this

(835) form length must be >= 15 (Assembler)

The form length specified using the ~-F1ength option must be at least 15 lines. Setting this length
to zero is allowed and turns off paging altogether. The default value is zero (pageless).

458

Error and Warning Messages

(836) no file arguments (Assembler)

The assembler has been invoked without any file arguments. It cannot assemble anything.

(839) relocation too complex (Assembler)

The complex relocation in this expression is too big to be inserted into the object file.

(840) phase error (Assembler)

The assembler has calculated a different value for a symbol on two different passes. This is probably
due to bizarre use of macros or conditional assembly.

(842) bad bit number (Assembler, Optimiser)

A bit number must be an absolute expression in the range 0-7.

(843) a macro name can’t also be an EQU/SET symbol (Assembler)

An EQU or SET symbol has been found with the same name as a macro. This is not allowed. For
example:

getval MACRO
mov r0, rl

ENDM
getval EQU 55h ; oops -- choose a different name to the macro
(844) lexical error (Assembler, Optimiser)

An unrecognized character or token has been seen in the input.

(845) symbol "*'"" defined more than once (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol
is defined more than once in the same module, e.g.:

_next:
move r0, #55
move [rl], r0
_next: ; oops —-- choose a different name

459

Error and Warning Messages

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in
different modules. The names of the modules are given in the error message. Note that C identifiers
often have an underscore prepended to their name after compilation.

(846) relocation error (Assembler, Optimiser)

It is not possible to add together two relocatable quantities. A constant may be added to a relocatable
value, and two relocatable addresses in the same psect may be subtracted. An absolute value must
be used in various places where the assembler must know a value at assembly time.

(847) operand error (Assembler, Optimiser)

The operand to this opcode is invalid. Check your assembler reference manual for the proper form
of operands for this instruction.

(849) illegal instruction for this processor (Assembler)

The instruction is not supported by this processor.

(850) PAGESEL not usable with this processor (Assembler)

The PAGESEL pseudo-instruction is not usable with the device selected.

(852) radix must be from 2 - 16 (Assembler)

The radix specified using the RADIX assembler directive must be in the range from 2 (binary) to 16
(hexadecimal).

(853) invalid size for FNSIZE directive (Assembler)

The assembler FNSIZE assembler directive arguments must be positive constants.

(855) ORG argument must be a positive constant (Assembler)

An argument to the ORG assembler directive must be a positive constant or a symbol which has been
equated to a positive constant, e.g.:

ORG -10 /* this must a positive offset to the current psect */

460

Error and Warning Messages

(856) ALIGN argument must be a positive constant (Assembler)

The align assembler directive requires a non-zero positive integer argument.

(857) psect may not be local and global (Linker)
A local psect may not have the same name as a global psect, e.g.:

psect text,class=CODE ; text is implicitly global
move r0, rl

; elsewhere:

psect text,local,class=CODE
move r2, r4

The global flag is the default for a psect if its scope is not explicitly stated.

(859) argument to C option must specify a positive constant (Assembler)

The parameter to the LIST assembler control’s C= option (which sets the column width of the listing
output) must be a positive decimal constant number, e.g.:

LIST C=alh ; constant must be decimal and positive,
try: LIST C=80
(860) page width must be >= 49 (Assembler)

The page width suboption to the LIST assembler directive must specify a with of at least 49.

(861) argument to N option must specify a positive constant (Assembler)

The parameter to the LIST assembler control’s N option (which sets the page length for the listing
output) must be a positive constant number, e.g.:

LIST N=-3 ; page length must be positive

(862) symbol is not external (Assembler)

A symbol has been declared as EXTRN but is also defined in the current module.

(863) symbol can’t be both extern and public (Assembler)

If the symbol is declared as extern, it is to be imported. If it is declared as public, it is to be exported
from the current module. It is not possible for a symbol to be both.

461

Error and Warning Messages

(864) argument to ''size'" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s size option must be a positive constant number,
e.g.

PSECT text,class=CODE,size=-200 ; a negative size?

(865) psect flag ''size' redefined (Assembler)

The size flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM, size=400
; elsewhere:
psect spdata,class=RAM, size=500

(866) argument to ''reloc' psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s reloc option must be a positive constant number,
e.g.

psect test,class=CODE,reloc=-4 ; the reloc must be positive

(867) psect flag '"reloc' redefined (Assembler)

The reloc flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM, reloc=4
; elsewhere:
psect spdata,class=RAM, reloc=8

(868) argument to ''delta' psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s DELTA option must be a positive constant number,
e.g.

PSECT text,class=CODE,delta=-2 ; negative delta value doesn’t make sense

(869) psect flag "'delta'" redefined (Assembler)

The "DELTA’ option of a psect has been redefined more than once in the same module.

462

Error and Warning Messages

(870) argument to ''pad" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s "PAD’ option must be a non-zero positive integer.

(871) argument to ''space' psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s space option must be a positive constant number,
e.g.

PSECT text,class=CODE, space=-1 ; space values start at zero

(872) psect flag "'space'’ redefined (Assembler)

The space flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM, space=0
; elsewhere:
psect spdata,class=RAM, space=1

(873) a psect may only be in one class (Assembler)

You cannot assign a psect to more than one class. The psect was defined differently at this point than
when it was defined elsewhere. A psect’s class is specified via a flag as in the following:

psect text,class=CODE

Look for other psect definitions that specify a different class name.

(874) a psect may only have one '"with'' option (Assembler)

A psect can only be placed with one other psect. A psect’s with option is specified via a flag as in
the following:

psect Dbss,with=data

Look for other psect definitions that specify a different with psect name.

(875) bad character constant in expression (Assembler,Optimizer)

The character constant was expected to consist of only one character, but was found to be greater
than one character or none at all. An assembler specific example:

mov r0, #'12' ; 12" specifies two characters

463

Error and Warning Messages

(876) syntax error (Assembler, Optimiser)

A syntax error has been detected. This could be caused a number of things.

(877) yacc stack overflow (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(878) -S option used: '"*" ignored (Driver)

The indicated assembly file has been supplied to the driver in conjunction with the -S option. The
driver really has nothing to do since the file is already an assembly file.

(880) invalid number of parameters. Use "* —HELP" for help (Driver)

Improper command-line usage of the of the compiler’s driver.

(881) setup succeeded (Driver)

The compiler has been successfully setup using the --setup driver option.

(883) setup failed (Driver)

The compiler was not successfully setup using the ——setup driver option. Ensure that the directory
argument to this option is spelt correctly, is syntactically correct for your host operating system and
it exists.

(884) please ensure you have write permissions to the configuration file (Driver)

The compiler was not successfully setup using the --setup driver option because the driver was
unable to access the XML configuration file. Ensure that you have write permission to this file. The
driver will search the following configuration files in order:

o the file specified by the environment variable HTC_XML

o the file /etc/htsoft.xml if the directory ’/etc’ is writable and there isno .htsoft .xml file
in your home directory

e the file .htsoft.xml file in your home directory

If none of the files can be located then the above error will occur.

464

Error and Warning Messages

(889) this * compiler has expired (Driver)

The demo period for this compiler has concluded.

(890) contact HI-TECH Software to purchase and re-activate this compiler (Driver)

The evaluation period of this demo installation of the compiler has expired. You will need to pur-
chase the compiler to re-activate it. If however you sincerely believe the evaluation period has ended
prematurely please contact HI-TECH technical support.

(891) can’t open psect usage map file '"*'': * (Driver)
The driver was unable to open the indicated file. The psect usage map file is generated by the
driver when the driver option --summary=file is used. Ensure that the file is not open in another
application.

(892) can’t open memory usage map file ''*'": * (Driver)
The driver was unable to open the indicated file. The memory usage map file is generated by the
driver when the driver option --summary=file is used. Ensure that the file is not open in another
application.

(893) can’t open HEX usage map file "'*'': * (Driver)
The driver was unable to open the indicated file. The HEX usage map file is generated by the
driver when the driver option --summary=file is used. Ensure that the file is not open in another
application.

(894) unknown source file type ''*" (Driver)
The extension of the indicated input file could not be determined. Only files with the extensions as,
c, obj, usb, pl, 1ib or hex are identified by the driver.

(895) can’t request and specify options in the one command (Driver)

The usage of the driver options -—getoption and —-setoption is mutually exclusive.

(896) no memory ranges specified for data space (Driver)

No on-chip or external memory ranges have been specified for the data space memory for the device
specified.

465

Error and Warning Messages

(897) no memory ranges specified for program space (Driver)

No on-chip or external memory ranges have been specified for the program space memory for the
device specified.

(899) can’t open option file ''*'"" for application "'*'": * (Driver)

An option file specified by a -~—getoption or --setoption driver option could not be opened. If
you are using the --setoption option ensure that the name of the file is spelt correctly and that
it exists. If you are using the -—getoption option ensure that this file can be created at the given
location or that it is not in use by any other application.

(900) exec failed: * (Driver)

The subcomponent listed failed to execute. Does the file exist? Try re-installing the compiler.

(902) no chip name specified; use "'* —CHIPINFO' to see available chip names (Driver)

The driver was invoked without selecting what chip to build for. Running the driver with the —
CHIPINFO option will display a list of all chips that could be selected to build for.

(904) illegal format specified in '"'*'' option (Driver)
The usage of this option was incorrect. Confirm correct usage with —-HELP or refer to the part of the
manual that discusses this option.

(905) illegal application specified in '"*'' option (Driver)

The application given to this option is not understood or does not belong to the compiler.

(907) unknown memory space tag ''*' in ''*'"' option specification (Driver)
A parameter to this memory option was a string but did not match any valid tags. Refer to the section
of this manual that describes this option to see what tags (if any) are valid for this device.

(908) exit status = * (Driver)

One of the subcomponents being executed encountered a problem and returned an error code. Other
messages should have been reported by the subcomponent to explain the problem that was encoun-
tered.

466

Error and Warning Messages

(913) '*" option may cause compiler errors in some standard header files (Driver)

Using this option will invalidate some of the qualifiers used in the standard header files resulting in
errors. This issue and its solution are detailed in the section of this manual that specifically discusses
this option.

(915) no room for arguments (Preprocessor, Parser, Code Generator, Linker, Objtohex)

The code generator could not allocate any more memory.

(917) argument too long (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(918) *: no match (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(919) * in chipinfo file ''*'" at line * (Driver)

The specified parameter in the chip configuration file is illegal.

(920) empty chipinfo file (Driver, Assembler)

The chip configuration file was able to be opened but it was empty. Try re-installing the compiler.

(922) chip "*" not present in chipinfo file ''*" (Driver)
The chip selected does not appear in the compiler’s chip configuration file. You may need to contact
HI-TECH Software to see if support for this device is available or upgrade the version of your
compiler.

(923) unknown suboption "'*" (Driver)
This option can take suboptions, but this suboption is not understood. This may just be a simple
spelling error. If not, -HELP to look up what suboptions are permitted here.

(924) missing argument to ''*'' option (Driver)

This option expects more data but none was given. Check the usage of this option.

467

Error and Warning Messages

(925) extraneous argument to ''*'' option (Driver)
This option does not accept additional data, yet additional data was given. Check the usage of this
option.

(926) duplicate ""*'" option (Driver)

This option can only appear once, but appeared more than once.

(928) bad "*'" option value (Driver, Assembler)

The indicated option was expecting a valid hexadecimal integer argument.

(929) bad "*'" option ranges (Driver)
This option was expecting a parameter in a range format (start_of_range-end_of _range), but the
parameter did not conform to this syntax.

(930) bad "*'" option specification (Driver)
The parameters to this option were not specified correctly. Run the driver with —-HELP or refer to
the driver’s chapter in this manual to verify the correct usage of this option.

(931) command file not specified (Driver)
Command file to this application, expected to be found after ' @’ or '<’ on the command line was
not found.

(939) no file arguments (Driver)

The driver has been invoked with no input files listed on its command line. If you are getting this
message while building through a third party IDE, perhaps the IDE could not verify the source files
to compile or object files to link and withheld them from the command line.

(940) *-bit checksum * placed at * (Objtohex)

Presenting the result of the requested checksum calculation.

(941) bad "*'" assignment; USAGE: ** (Hexmate)

An option to Hexmate was incorrectly used or incomplete. Follow the usage supplied by the message
and ensure that that the option has been formed correctly and completely.

468

Error and Warning Messages

(942) unexpected character on line * of file "*" (Hexmate)

File contains a character that was not valid for this type of file, the file may be corrupt. For example,
an Intel hex file is expected to contain only ASCII representations of hexadecimal digits, colons (:)
and line formatting. The presence of any other characters will result in this error.

(944) data conflict at address *h between * and * (Hexmate)
Sources to Hexmate request differing data to be stored to the same address. To force one data source
to override the other, use the '+’ specifier. If the two named sources of conflict are the same source,
then the source may contain an error.

(945) checksum range (*h to *h) contained an indeterminate value (Hexmate)
The range for this checksum calculation contained a value that could not be resolved. This can
happen if the checksum result was to be stored within the address range of the checksum calculation.
(948) checksum result width must be between 1 and 4 bytes (Hexmate)
The requested checksum byte size is illegal. Checksum results must be within 1 to 4 bytes wide.
Check the parameters to the -CKSUM option.

(949) start of checksum range must be less than end of range (Hexmate)
The -CKSUM option has been given a range where the start is greater than the end. The parameters
may be incomplete or entered in the wrong order.

(951) start of fill range must be less than end of range (Hexmate)
The -FILL option has been given a range where the start is greater than the end. The parameters may
be incomplete or entered in the wrong order.

(953) unknown -HELP sub-option: * (Hexmate)
Invalid sub-option passed to -HELP. Check the spelling of the sub-option or use -HELP with no
sub-option to list all options.

(956) -SERIAL value must be between 1 and * bytes long (Hexmate)
The serial number being stored was out of range. Ensure that the serial number can be stored in the

number of bytes permissible by this option.

469

Error and Warning Messages

(958) too many input files specified; * file maximum (Hexmate)
Too many file arguments have been used. Try merging these files in several stages rather than in one
command.

(960) unexpected record type (*) on line * of "'*"' (Hexmate)
Intel hex file contained an invalid record type. Consult the Intel hex format specification for valid
record types.

(962) forced data conflict at address *h between * and * (Hexmate)

Sources to Hexmate force differing data to be stored to the same address. More than one source
using the ’+’ specifier store data at the same address. The actual data stored there may not be what
you expect.

(963) checksum range includes voids or unspecified memory locations (Hexmate)
Checksum range had gaps in data content. The runtime calculated checksum is likely to differ from
the compile-time checksum due to gaps/unused byes within the address range that the checksum is
calculated over. Filling unused locations with a known value will correct this.

(964) unpaired nibble in -FILL value will be truncated (Hexmate)
The hexadecimal code given to the FILL option contained an incomplete byte. The incomplete byte
(nibble) will be disregarded.

(965) -STRPACK option not yet implemented, option will be ignored (Hexmate)

This option currently is not available and will be ignored.

(966) no END record for HEX file "' *" (Hexmate)

Intel hex file did not contain a record of type END. The hex file may be incomplete.

(967) unused function definition "*'" (from line *) (Parser)

The indicated static function was never called in the module being compiled. Being static, the
function cannot be called from other modules so this warning implies the function is never used.
Either the function is redundant, or the code that was meant to call it was excluded from compilation
or misspelt the name of the function.

470

Error and Warning Messages

(968) unterminated string (Assembler, Optimiser)

A string constant appears not to have a closing quote missing.

(969) end of string in format specifier

The format specifier for the printf() style function is malformed.

(970) character not valid at this point in format specifier

The printf() style format specifier has an illegal character.

(971) type modifiers not valid with this format

Type modifiers may not be used with this format.

(972) only modifiers ""h' and '"'1" valid with this format

Only modifiers h (short) and 1 (1ong) are legal with this printf format specifier.

(973) only modifier "1'"" valid with this format

The only modifier that is legal with this format is 1 (for long).

(974) type modifier already specified

This type modifier has already be specified in this type.

(975) invalid format specifier or type modifier

(Parser)

(Parser)

(Parser)

(Parser)

(Parser)

(Parser)

(Parser)

The format specifier or modifier in the printf-style string is illegal for this particular format.

(976) field width not valid at this point

A field width may not appear at this point in a printf() type format specifier.

(Parser)

471

Error and Warning Messages

(978) this identifier is already an enum tag (Parser)

This identifier following a struct or union keyword is already the tag for an enumerated type, and
thus should only follow the keyword enum, e.g.:

enum IN {ONE=1, TWO};

struct IN { /* oops —— IN is already defined */
int a, b;
bi
(979) this identifier is already a struct tag (Parser)

This identifier following a union or enum keyword is already the tag for a structure, and thus should
only follow the keyword struct, e.g.:

struct IN {
int a, b;
i
enum IN {ONE=1, TWO}; /* oops —-- IN is already defined */
(980) this identifier is already a union tag (Parser)

This identifier following a struct or enum keyword is already the tag for a union, and thus should
only follow the keyword union, e.g.:

union IN {
int a, b;
}i
enum IN {ONE=1, TWO}; /* oops -- IN is already defined */
(981) pointer required (Parser)

A pointer is required here, e.g.:

struct DATA data;
data->a = 9; /* data 1s a structure,
not a pointer to a structure */

(982) unknown op '"*'" in nxtuse() (Optimiser,Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

472

Error and Warning Messages

(983) storage class redeclared (Parser)

A variable previously declared as being static, has now be redeclared as extern.

(984) type redeclared (Parser)

The type of this function or object has been redeclared. This can occur because of two incompatible
declarations, or because an implicit declaration is followed by an incompatible declaration, e.g.:

int a;
char a; /* oops -- what is the correct type? */
(985) (qualifiers redeclared (Parser)

This function or variable has different qualifiers in different declarations.

(986) enum member redeclared (Parser)

A member of an enumeration is defined twice or more with differing values. Does the member
appear twice in the same list or does the name of the member appear in more than one enum list?

(987) arguments redeclared (Parser)

The data types of the parameters passed to this function do not match its prototype.

(988) number of arguments redeclared (Parser)

The number of arguments in this function declaration does not agree with a previous declaration of
the same function.

(989) module has code below file base of *h (Linker)

This module has code below the address given, but the —-C option has been used to specify that a
binary output file is to be created that is mapped to this address. This would mean code from this
module would have to be placed before the beginning of the file! Check for missing psect directives
in assembler files.

473

Error and Warning Messages

(990) modulus by zero in #if; zero result assumed (Preprocessor)

A modulus operation in a #1if expression has a zero divisor. The result has been assumed to be zero,
e.g.

#define ZERO 0

#if FOO%ZERO /* this will have an assumed result of 0 */
#define INTERESTING

#endif

(991) integer expression required (Parser)

In an enum declaration, values may be assigned to the members, but the expression must evaluate to
a constant of type int, e.g.:

enum {one = 1, two, about_three = 3.12};
/* no non-int values allowed */
(992) can’t find op (Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(993) some command-line options are disabled (Driver)

The compiler is operating in demo mode. Some command-line options are disabled.

(994) some command-line options are disabled and compilation is delayed (Driver)
The compiler is operating in demo mode. Some command-line options are disabled, the compilation
speed will be slower.

(995) some command-line options are disabled, code size is limited to 16kB, compilation is
delayed (Driver)
The compiler is operating in demo mode. Some command-line options are disabled, the compilation
speed will be slower, and the maximum allowed code size is limited to 16kB.

(1003) nested "if"" directives too deep (Assembler)
A series of assembler IF directives have been nested too deep. The maximum depth may vary but

typically 10 levels are permitted.

474

Error and Warning Messages

(1013) argument to "'limit" psect flag must specify a positive constant (Assembler)
The value of the limit flag as used in a psect’s declaration must be a positive constant. A negative
limit is not permissible.

(1014) psect flag ""limit" redefined (Assembler)
The limit flag in a psect declaration has been redeclared with a differing. It is not necessary to
redeclare this flag.

(1015) missing ""*" specification in chipinfo file ''*'" at line * (Driver)

This attribute was expected to appear at least once but was not defined for this chip.

(1016) missing argument* to ''*'" specification in chipinfo file ''*'" at line * (Driver)

This value of this attribute is blank in the chip configuration file.

(1017) extraneous argument* to ''*'" specification in chipinfo file ''*'" at line * (Driver)
There are too many attributes for the the listed specification in the chip configuration file.

(1018) illegal number of "'*'" specification* (* found; * expected) in chipinfo file ''*'" at line *
(Driver)

This attribute was expected to appear a certain number of times but it did not for this chip.

1

(1019) duplicate "*'" specification in chipinfo file at line * (Driver)

This attribute can only be defined once but has been defined more than once for this chip.

(1020) unknown attribute '"*'" in chipinfo file ''*'' at line * (Driver)

The chip configuration file contains an attribute that is not understood by this version of the com-
piler. Has the chip configuration file or the driver been replaced with an equivalent component from
another version of this compiler?

(1021) syntax error reading ''*'' value in chipinfo file ''*'" at line * (Driver)

The chip configuration file incorrectly defines the specified value for this device. If you are modify-
ing this file yourself, take care and refer to the comments at the beginning of this file for a description
on what type of values are expected here.

475

Error and Warning Messages

(1022) syntax error reading ''*'' range in chipinfo file ''*'" at line * (Driver)

The chip configuration file incorrectly defines the specified range for this device. If you are modify-
ing this file yourself, take care and refer to the comments at the beginning of this file for a description
on what type of values are expected here.

(1024) syntax error in chipinfo file ''*'" at line * (Driver)

The chip configuration file contains a syntax error at the line specified.

(1025) unknown architecture in chipinfo file ''*'" at line * (Driver)

The attribute at the line indicated defines an architecture that is unknown to this compiler.

(1026) missing architecture in chipinfo file ''*'" at line * (Assembler)
The chipinfo file has a processor section without an ARCH values. The architecture of the processor
must be specified. Contact HI-TECH Support if the chipinfo file has not been modified.

(1027) activation was successful (Driver)

The compiler was successfully activated.

(1028) activation was not successful - error code (*) (Driver)

The compiler did not activated successfully.

(1029) compiler not installed correctly - error code (*) (Driver)

This compiler has failed to find any activation information and cannot proceed to execute. The com-
piler may have been installed incorrectly or incompletely. The error code quoted can help diagnose
the reason for this failure. You may be asked for this failure code if contacting HI-TECH Software
for assistance with this problem.

(1030) HEXMATE - Intel hex editing utility (Build 1.%1) (Hexmate)

Indicating the version number of the Hexmate being executed.

(1031) USAGE: * [inputl.hex] [input2.hex]... [inputN.hex] [options] (Hexmate)

The suggested usage of Hexmate.

476

Error and Warning Messages

(1032) use —-HELP=<option> for usage of these command line options (Hexmate)

More detailed information is available for a specific option by passing that option to the HELP
option.

(1033) available command-line options: (Hexmate)

This is a simple heading that appears before the list of available options for this application.

(1034) type "*'" for available options (Hexmate)

It looks like you need help. This advisory suggests how to get more information about the options
available to this application or the usage of these options.

(1035) bad argument count (*) (Parser)

The number of arguments to a function is unreasonable. This is an internal compiler error. Contact
HI-TECH Software technical support with details.

(1036) bad "*" optional header length (0x* expected) (Cromwell)

The length of the optional header in this COFF file was of an incorrect length.

(1037) short read on * (Cromwell)

When reading the type of data indicated in this message, it terminated before reaching its specified
length.

(1038) string table length too short (Cromwell)

The specified length of the COFF string table is less than the minimum.

(1039) inconsistent symbol count (Cromwell)

The number of symbols in the symbol table has exceeded the number indicated in the COFF header.

(1040) bad checksum: record 0x*, checksum 0x* (Cromwell)

A record of the type specified failed to match its own checksum value.

477

Error and Warning Messages

(1041) short record (Cromwell)

While reading a file, one of the file’s records ended short of its specified length.

(1042) unknown * record type 0x* (Cromwell)

The type indicator of this record did not match any valid types for this file format.

(1043) unknown optional header (Cromwell)

When reading this Microchip COFF file, the optional header within the file header was of an incor-
rect length.

(1044) end of file encountered (Cromwell, Linker)

The end of the file was found while more data was expected. Has this input file been truncated?

(1045) short read on block of * bytes (Cromwell)

A while reading a block of byte data from a UBROF record, the block ended before the expected
length.

(1046) short string read (Cromwell)

A while reading a string from a UBROF record, the string ended before the specified length.

(1047) Dbad type byte for UBROF file (Cromwell)
This UBROF file did not begin with the correct record.

(1048) bad time/date stamp (Cromwell)
This UBROF file has a bad time/date stamp.

(1049) wrong CRC on 0x* bytes; should be * (Cromwell)
An end record has a mismatching CRC value in this UBROF file.

(1050) bad date in 0x52 record (Cromwell)
A debug record has a bad date component in this UBROF file.

478

Error and Warning Messages

(1051) bad date in 0x01 record (Cromwell)

A start of program record or segment record has a bad date component in this UBROF file.

(1052) unknown record type (Cromwell)

A record type could not be determined when reading this UBROF file.

(1058) assertion (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1059) rewrite loop (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1081) static initialization of persistent variable '*" (Parser, Code Generator)

A persistent variable has been assigned an initial value. This is somewhat contradictory as the initial
value will be assigned to the variable during execution of the compiler’s startup code, however the
persistent qualifier requests that this variable shall be unchanged by the compiler’s startup code.

(1082) size of initialized array element is zero (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1088) function pointer "*'" is used but never assigned a value (Code Generator)

A function call involving a function pointer was made, but the pointer was never assigned a target
address, e.g.:

void (*fp) (int);
fp(23); /* oops -- what function does fp point to? */
(1089) recursive function call to ''*" (Code Generator)

A recursive call to the specified function has been found. The call may be direct or indirect (using
function pointers) and may be either a function calling itself, or calling another function whose call
graph includes the function under consideration.

479

Error and Warning Messages

(1090) variable "*" is not used (Code Generator)

This variable is declared but has not been used by the program. Consider removing it from the
program.

(1091) main function "*'" not defined (Code Generator)

The main function has not been defined. Every C program must have a function called main.

(1094) bad derived type (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1095) bad call to typeSub() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1096) type should be unqualified (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1097) unknown type string "'*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1098) conflicting declarations for variable '"*' (*:%*) (Parser, Code Generator)

Differing type information has been detected in the declarations for a variable, or between a declaratin
and the definition of a variable, e.g.:

extern long int test;
int test; /* oops -- which is right? int or long int ? */

(1104) unqualified error (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1118) bad string "*" in getexpr(J) (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

480

Error and Warning Messages

(1119) bad string "*'" in getexpr(LRN) (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1121) expression error (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1137) match() error: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1157) W register must be W9 (Assembler)

The working register required here has to be W9, but an other working register was selected.

(1159) W register must be W11 (Assembler)

The working register required here has to be W11, but an other working register was selected.

(1178) the "*'" option has been removed and has no effect (Driver)

This option no longer exists in this version of the compiler and has been ignored. Use the compiler’s
—help option or refer to the manual to find a replacement option.

(1179) interrupt level for function '"*'' may not exceed * (Code Generator)

The interrupt level for the function specified is too high. Each interrupt function is assigned a
unique interrupt level. This level is considered when analysing the call graph and re-entrantly called
functions. If using the interrupt_level pragma, check the value specified.

(1180) directory "*'" does not exist (Driver)

The directory specified in the setup option does not exist. Create the directory and try again.

(1182) near variables must be global or static (Code Generator)

A variable qualified as near must also be qualified with static or made global. An auto variable
cannot be qualified as near.

481

Error and Warning Messages

(1183) invalid version number (Activation)
During activation, no matching version number was found on the HI-TECH activation server database
for the serial number specified.

(1184) activation limit reached (Activation)
The number of activations of the serial number specified has exceeded the maximum number allowed
for the license.

(1185) invalid serial number (Activation)

During activation, no matching serial number was found on the HI-TECH activation server database.

(1186) licence has expired (Driver)

The time-limited license for this compiler has expired.

(1187) invalid activation request (Driver)

The compiler has not been correctly activated.

(1188) network error * (Activation)
The compiler activation software was unable to connect to the HI-TECH activation server via the
network.

(1190) FAE license only - not for use in commercial applications (Driver)
Indicates that this compiler has been activated with an FAE licence. This licence does not permit the
product to be used for the development of commercial applications.

(1191) licensed for educational use only (Driver)

Indicates that this compiler has been activated with an education licence. The educational licence is
only available to educational facilities and does not permit the product to be used for the development
of commercial applications.

(1192) licensed for evaluation purposes only (Driver)

Indicates that this compiler has been activated with an evaluation licence.

482

Error and Warning Messages

(1193) this licence will expire on * (Driver)

The compiler has been installed as a time-limited trial. This trial will end on the date specified.

(1195) invalid syntax for "*'' option (Driver)
A command line option that accepts additional parameters was given inappropriate data or insuffi-
cient data. For example an option may expect two parameters with both being integers. Passing a
string as one of these parameters or supplying only one parameter could result in this error.

(1198) too many ''*'" specifications; * maximum (Hexmate)
This option has been specified too many times. If possible, try performing these operations over
several command lines.

(1199) compiler has not been activated (Driver)

The trial period for this compiler has expired. The compiler is now inoperable until activated with
a valid serial number. Contact HI-TECH Software to purchase this software and obtain a serial
number.

(1200) Found %0*I1Xh at address *h (Hexmate)

The code sequence specified in a -FIND option has been found at this address.

(1201) all FIND/REPLACE code specifications must be of equal width (Hexmate)
All find, replace and mask attributes in this option must be of the same byte width. Check the
parameters supplied to this option. For example finding 1234h (2 bytes) masked with FFh (1 byte)
will result in an error, but masking with O0FFh (2 bytes) will be Ok.

(1202) unknown format requested in -FORMAT: * (Hexmate)
An unknown or unsupported INHX format has been requested. Refer to documentation for supported
INHX formats.

(1203) unpaired nibble in * value will be truncated (Hexmate)

Data to this option was not entered as whole bytes. Perhaps the data was incomplete or a leading
zero was omitted. For example the value Fh contains only four bits of significant data and is not a
whole byte. The value OFh contains eight bits of significant data and is a whole byte.

483

Error and Warning Messages

(1204) * value must be between 1 and * bytes long (Hexmate)
An illegal length of data was given to this option. The value provided to this option exceeds the
maximum or minimum bounds required by this option.

(1205) using the configuration file *; you may override this with the environment variable

HTC_XML (Driver)

This is the compiler configuration file selected during compiler setup. This can be changed via
the HTC_XML environment variable. This file is used to determine where the compiler has been
installed.

(1207) some of the command line options you are using are now obsolete (Driver)
Some of the command line options passed to the driver have now been discontinued in this version
of the compiler, however during a grace period these old options will still be processed by the driver.
(1208) use -help option or refer to the user manual for option details (Driver)
An obsolete option was detected. Use —help or refer to the manual to find a replacement option that
will not result in this advisory message.

(1209) An old MPLAB tool suite plug-in was detected. (Driver)

The options passed to the driver resemble those that the Microchip MPLAB IDE would pass to a
previous version of this compiler. Some of these options are now obsolete, however they were still
interpreted. It is recommended that you install an updated HI-TECH options plug-in for the MPLAB
IDE.

(1210) Visit the HI-TECH Software website (www.htsoft.com) for a possible update (Driver)

Visit our website to see if an update is available to address the issue(s) listed in the previous compiler
message. Please refer to the on-line self-help facilities such as the Frequently asked Questions or
search the On-line forums. In the event of no details being found here, contact HI-TECH Software
for further information.

(1211) Memory type "*'" is not valid for this device (Driver)

A command-line option attempted to add a type of memory to this device that is not supported by
this device. For example, adding external RAM to a device that does not have an external memory
interface.

484

Error and Warning Messages

(1212) Found * (%0*1Xh) at address *h (Hexmate)

The code sequence specified in a -FIND option has been found at this address.

(1213) duplicate ARCH for * in chipinfo file at line * (Assembler, Driver)
The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is
allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(1214) duplicate RAMSIZE for * in chipinfo file at line * (Assembler)

More than one RAMSIZE entry was found in the chipinfo file for this particular chip.

(1215) can’t open chipinfo file * (Assembler)

The chip configuration file was not able to be opened for reading. Check that the file’s pathname is
correct.

(1216) empty chipinfo file * (Assembler)
The chip configuration file was able to be opened but was found to be empty. This file may have
been corrupted.

(1217) can’t open command file * (Assembler)

The input command file could not be opened for reading. Check that the file’s pathname is correct.

(1218) can’t create cross reference file * (Assembler)
The assembler attempted to create a cross reference file, but it could not be created. Check that the
file’s pathname is correct.

(1219) can’t create list file * (Assembler)

The assembler could not open or create an assembler listing file. Check that the file’s pathname is
correct. Is the file attempting to be created in a read-only directory or is the file already open in
another application?

485

Error and Warning Messages

(1220) can’t create assembler file * (Assembler)
The assembler could not open or create an assembler output file. Check that the file’s pathname is
correct. Is the file attempting to be created in a read-only directory or is the file already open in
another application?

(1221) can’t create relocatable list file * (Assembler)
The assembler could not open or create its relocatable list file. Is the file attempting to be created in
a read-only directory or is the file already open in another application?

(1222) can’t create object file * (Assembler)

The assembler could not open or create its output object file. Check that the file’s pathname is
correct. Is the file attempting to be created in a read-only directory or is the file already open in
another application?

(1223) relative branch/call offset out of range (Assembler)

The destination of a relative branch or call instruction was too far away for the instruction to reach.
These instructions have a limited reach. Try using an instruction other than a relative branch/call to
get to the destination, or bring the destination closer.

(1224) banked/common conflict (Assembler)

The assembler has found conflicting information that suggests that a symbol is located in the access
bank, but also in the banked RAM area, e.g.:

movwf c:_foo,b ; _foo cannot be common and banked

(1225) LFSR instruction argument must be 0-3 (Assembler)

The LFSR instruction’s first parameter must be within the range 0 to 3.

(1228) unable to locate installation directory (Driver)

The compiler cannot determine the directory where it has been installed.

(1230) dereferencing uninitialized pointer ''*" (Code Generator)

A pointer that has not yet been assigned a value has been dereferenced. This can result in erroneous
behaviour at runtime.

486

Error and Warning Messages

(1232) persistent data may be corrupted during asynchronous reset (see errata) (Driver)
For some PIC18 chips, data may become corrupted during the event of an asynchronous reset. Refer
to the Microchip errata document for more details about how this chip is affected. This

(1233) Employing * errata work-arounds: (Driver)

The compiler is applying software workarounds for known issues in the selected device. Consult the
errata document for this device to see whether it is safe to disable the compiler’s workaround for any
of the listed problems.

(1234) ** (Driver)

Listing a silicon defect that the compiler is working around. Software workarounds generally in-
crease the overall code size. Refer to the errata document for the device you are using to see whether
the defect affects your program. If not, you may save space by disabling the workaround.

(1235) unknown keyword * (Driver)

The token contained in the USB descriptor file was not recognised.

(1236) invalid argument to *: * (Driver)
An option that can take additional parameters was given an invalid parameter value. Check the usage
of the option or the syntax or range of the expected parameter.

(1237) endpoint 0 is pre-defined (Driver)

An attempt has been made to define endpoint O in a USB file. This channel c

(1238) FNALIGN failure on * (Linker)

Two functions have their auto/parameter blocks aligned using the FNALIGN directive, but one func-
tion calls the other, which implies that must not be aligned. This will occur if a function pointer is
assigned the address of each function, but one function calls the other. For example:

int one(int a) { return a; }

int two(int a) { return two(a)+2; } /* ! */
int (*ip) (int);

ip = one;

ip(23);

487

Error and Warning Messages

ip = two; /* ip references one and two; two calls one */
ip (67);
(1239) pointer * has no valid targets (Code Generator)

A function call involving a function pointer was made, but the pointer was never assigned a target
address, e.g.:

void (*fp) (int);
fp(23); /* oops -- what function does fp point to? */

(1240) unknown checksum algorithm type (%1) (Driver)

The error file specified after the -Efile or -E+file options could not be opened. Check to ensure
that the file or directory is valid and that has read only access.

(1241) bad start address in * (Driver)

The start of range address for the -——CHECKSUM option could not be read. This value must be a
hexadecimal number.

(1242) bad end address in * (Driver)

The end of range address for the --CHECKSUM option could not be read. This value must be a
hexadecimal number.

(1243) bad destination address in * (Driver)

The destination address for the ——CHECKSUM option could not be read. This value must be a hexadec-
imal number.

(1245) value greater than zero required for * (Hexmate)

The align operand to the HEXMATE -FIND option must be positive.

(1246) no RAM defined for variable placement (Code Generator)

No memory has been specified to cover the banked RAM memory.

488

Error and Warning Messages

(1247) no access RAM defined for variable placement (Code Generator)

No memory has been specified to cover the access bank memory.

(1248) symbol (*) encountered with undefined type size (Code Generator)

The code generator was asked to position a variable, but the size of the variable is not known. This
is an internal compiler error. Contact HI-TECH Software technical support with details.

(1249) could not find space (* byte*) for variable * in access bank (Code Generator)

The code generator could not find space in the access bank RAM for the variable specified. Variables
qualifed as near are forced into this area of memory.

(1250) could not find space (* byte*) for variable * (Code Generator)

The code generator could not find space in the banked RAM for the variable specified.

(1251) no far RAM defined for variable placement (Code Generator)

Variables were qualified as far in the source code, but no memory has been specified to hold these
objects. Variables qualfiied as far will reside in the program space memory, but are writable. Mem-
ory can be secified using the —-RAM option with address ranges above the top of the on-chip program
space memory.

(1252) could not find space (* byte*) for variable * in far RAM (Code Generator)

The code generator could not find space in RAM for the psect that holds variables qualified as far.

(1253) could not find space (* byte*) for auto/param block (Code Generator)

The code generator could not find space in RAM for the psect that holds auto and parameter vari-
ables.

(1254) could not find space (* byte*) for data block (Code Generator)

The code generator could not find space in RAM for the data psect that holds initialised variables.

489

Error and Warning Messages

(1255) conflicting paths for output directory (Driver)

The compiler has been given contradictory paths for the output directory via any of the -O or
--OUTDIR options, e.g.

--outdir=../../ -0../main.hex

(1256) undefined symbol "*'" treated as hex constant (Assembler)

A token which could either be interpreted as a symbol or a hexadecimal value does not match any
previously defined symbol and so will be interpreted as the latter. Use a leading zero to avoid the
ambiguity, or use an alternate radix sepcifier such as 0x. For example:

mov a, F7h ; is this the symbol F7h, or the hex number 0xF77?

(1257) local variable "*'" is used but never given a value (Code Generator)

An auto variable has been defined and used in an expression, but it has not been assigned a value
in the C code before its first use. Auto variables are not cleared on startup and their initial value is
undefined. For example:

void main (void) {
double src, out;
out = sin(src); /* oops -- what value was in src? */

(1258) possible stack overflow when calling function '*" (Code Generator)

The call tree analysis by the code generator indicates that the hardware stack may overflow. This
should be treated as a guide only. Interrupts, the assembler optimizer and the program structure may
affect the stack usage. The stack usuage is based on the C program and does not include any call
tree derived from assembly code.

(1259) can’t optimize for both speed and space (Driver)
The driver has been given contradictory options of compile for speed and compile for space, e.g.

-—opt=speed, space

490

Error and Warning Messages

(1260) macro '"*'" redefined (Assembler)

More than one definition for a macro with the same name has been encountered, e.g.

MACRO fin
ret

ENDM

MACRO fin ; oops -- was this meant to be a different macro?
reti

ENDM

(1261) string constant required (Assembler)

A string argument is required with the DS or DSU directive, e.g.

DS ONE ; oops -- did you mean DS “ONE”?

(1264) unsafe pointer conversion (Code Generator)

A pointer to one kind of structure has been converted to another kind of structure and the structures
do not have a similar definition, e.g.

struct ONE ({

unsigned a;

long b; VARV
} one;
struct TWO {

unsigned a;

unsigned b; /x 1 x/
} two;
struct ONE * oneptr;
oneptr = & two; /* oops --

was ONE meant to be same struct as TWO? */

(1267) fixup overflow referencing * * (0x*) into * byte* at Ox* (*** */(Qx*) (Linker)

See the following error message (1268) for more information..

491

Error and Warning Messages

(1268) fixup overflow storing 0x* in * byte* at 0x* (*** */(x*) (Linker)
Fixup is the process conducted by the linker of replacing symbolic references to variables etc, in an
assembler instruction with an absolute value. This takes place after positioning the psects (program
sections or blocks) into the available memory on the target device. Fixup overflow is when the
value determined for a symbol is too large to fit within the allocated space within the assembler
instruction. For example, if an assembler instruction has an 8-bit field to hold an address and the
linker determines that the symbol that has been used to represent this address has the value 0x110,
then clearly this value cannot be inserted into the instruction.

(1269) there * * day* left until this licence will expire (Driver)
This compiler has not been activated and is running as a demo. The time indicated is how long the
demo period will continue.

(1273) Omniscient Code Generation not available in Lite mode (Driver)
When running in Lite mode, the advanced Omniscient Code Generation (OCG) features are disabled.
This will result in much larger code than would be produced when running in PRO mode.

(1274) delay exceeds maximum limit of * cycles (Code Generator)
The argument to the in-line delay routine (_delay) is limited to the maximum size indicated. Use
the routine consequtively, or place it is a loop to acheive the desired delay period.

(1282) no REAL ICE transport options specified (Driver)
When selecting the Microchip MPLAB REAL ICE as the debugger, the --debugger option must
include the transport type for trace facilities.

(1283) illegal table pointer address size * (__activetblptr) (Driver)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1284) malformed mapfile while generating summary: CLASS expected but not found(Driver)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1285) malformed mapfile while generating summary: no name at position * (Driver)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

492

Error and Warning Messages

(1286) malformed mapfile while generating summary: no link address at position * (Driver)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1287) malformed mapfile while generating summary: no load address at position * (Driver)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1288) malformed mapfile while generating summary: no length at position * (Driver)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1289) line range limit exceeded, debugging may be affected (Cromwell)

Internally Cromwell can only handle a limited number of addresses which correspond to a single
line of C code. In all but the most perverse cases this limit shouldn’t be reached. However if it has
then consider breaking up the related C statement into a series of simpiler statements. If that is not
possible or successful then contact HI-TECH Software technical support with details.

(1290) DWAREF: Buffer overflow in DIE (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1291) Dbad ELF string table index (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1292) malformed define in .SDB file * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1293) DWAREF: couldn’t find type for * (Cromwell)

This is an internal compiler warning. Contact HI-TECH Software technical support with details.

(1294) there is only one day left until this licence expires (Driver)

The compiler was fully activated for a limited evaluation period. That period is about to expire in
one day. When expired the compiler will switch to Lite mode - if available - or cease to function. To
fully reactivate the compiler a valid serial number is required. Please contact our sales department
for more details.

493

Error and Warning Messages

(1295) there are * days left until this licence will expire (Driver)

The compiler was fully activated for a limited evaluation period. That period expire soon. When
expired the compiler will switch to Lite mode - if available - or cease to function. To fully reactivate
the compiler a valid serial number is required. Please contact our sales department for more details.

(1296) source file '"*'" conflicts with "'*"' (Driver)

If two source files with the same name but different paths are given as arguments to the driver this
fatal error will occur. For example foobar.c may be specified twice but in different directories. This
is illegal in the cases where the compiler or IDE assumes that foobar.c will produce an intermediate
file foobar.pl and all intermediate files are output in the same directory regardless of the source
directory. Consider renaming one of these files.

(1297) option * not available in Lite mode (Driver)

Although fully functional, compilers in Lite mode have certain driver options disabled. These op-
tions are those (such as as —setoption and —getoption) which would allow users to circumvent the
restrictions on optimisations.

(1298) use of * outside macros is illegal (Assembler)

Some assembler directives, e.g. EXITM, can only be used inside macro definitions.

(1299) non-standard modifier ""*'"' - use ''*'" instead (Parser)

A printf placeholder modifier has been used which is non-standard. Use the indicated modifier
instead. For example, the standard hh modifier should be used in preference to b to indicate that the
value should be printed as a char type.

(1301) invalid ELF section header. Skipping (Cromwell)

Cromwell found an invalid section in an ELF section header. This section will be skipped.

(1302) could not find valid ELF output extension for this device (Cromwell)

The extension could not be for the target device family.

(1303) invalid variable location detected: * - * (Cromwell)

A symbol location could not be determined from the SDB file.

494

Error and Warning Messages

(1304) unknown register name: ''*" (Cromwell)

The location for the indicated symbol in the SDB file was a register, but the register name was not
recognized.

(1305) inconsistent storage class for variable: "'*" (Cromwell)

The storage class for the indicated symbol in the SDB file was not recognized.

(1306) inconsistent size (* vs ¥) for variable: ''*" (Cromwell)

The size of the symbol indicated in the SDB file does not match the size of its type.

(1307) psect * truncated to * bytes (Driver)

The psect representing either the stack or heap could not be made as large as requested and will be
truncated to fit the available memory space.

(1309) ignoring invalid runtime * sub-option (*) using default (Driver)
The indicated suboption to the ——RUNTIME option is malformed, e.g.
--RUNTIME=default, speed:0y1234

Oops, that should be 0x1234.

(1310) specified speed (*Hz) exceeds max operating frequency (*Hz), defaulting to *Hz
(Driver)

The frequency specified to the perform suboption to ——RUNTIME option is too large for the selected
device.

--RUNTIME=default, speed:O0xffffffff
Oops, that value is too large.

(1311) missing configuration setting for config word *, using default (Driver)

The configuration settings for the indicated word have not be supplied in the source code and a
default value will be used.

495

Error and Warning Messages

(1312) conflicting runtime perform sub-option and configuration word settings, assuming
*Hz (Driver)

The configuration settings and the value specified with the perform suboption of the ——RUNTIME
options conflict and a default frequency has been selected.

(1313) * sub-options ("'*'") ignored (Driver)

The argument to a suboption is not required and will be ignored.
--0OUTPUT=1intel:8

Oops, the : 8 is not required.

(1314) illegal action in memory allocation (Code Generator)

This is an internal error. Contact HI-TECH Support with details.

(1315) undefined or empty class used to link psect * (Linker)
The linker was asked to place a psect within the range of addresses specified by a class, but the class
was either never defined, or contains no memory ranges.

(1316) attribute "*' ignored (Parser)
An attribute has been encountered that is valid, but which is not implemented by the parser. It will be
ignored by the parser and the attribute will have no effect. Contact HI-TECH Support with details.
(1317) missing argument to attribute "' *' (Parser)
An attribute has been encountered that requires an argument, but this is not present. Contact HI-
TECH Support with details.

(1318) invalid argument to attribute "*" (Parser)
An argument to an attribute has been encountered, but it is malformed. Contact HI-TECH Support
with details.

(1319) invalid type "*" for attribute ''*" (Parser)

This indicated a bad option passed to the parser. Contact HI-TECH Support with details.

496

Error and Warning Messages

(1320) attribute "*'" already exists (Parser)

This indicated the same attribute option being passed to the parser more than once. Contact HI-
TECH Support with details.

(1321) bad attribute -T option " %s"' (Parser)

The attribute option passed to the parser is malformed. Contact HI-TECH Support with details.

(1322) unknown qualifier " %s'" given to -T (Parser)

The qualifier specified in an attribute option is not known. Contact HI-TECH Support with details.

(1323) attribute expected (Parser)

The __attribute__ directive was used but did not specify an attribute type.

int rv (int a) __attribute_ (()) /* oops -- what is the attribute? */

(1324) qualifier ""*'" ignored (Parser)

Some qualifiers are valid, but may not be implemented on some compilers or target devices. This
warning indicates that the qualifier will be ignored.

(1327) interrupt function "*'" redefined by "'*" (Code Generator)

An interrupt function has been written that is linked to a vector location that already has an interrupt
function lined to it.

void interrupt timerl_isr(void) @ TIMER_1_VCTR

{ ...}
void interrupt timer2_isr(void) @ TIMER_1_VCTR
{ ... } /* oops —— did you mean that to be TIMER_2_VCTR */

(1342) whitespace after "\" (Preprocessor)

Whitespace characters have been found between a backslash and newline characters and will be
ignored.

497

Error and Warning Messages

(1343) hexfile data at address 0x* (0x*) overwritten with 0x* (Objtohex)

The indicated address is about to be overwritten by additional data. This would indicate more than
one section of code contributing to the same address.

(1346) can’t find 0x* words for psect '"*'" in segment '"*'"' (largest unused contiguous range
0x %I1X) (Linker)

See also message (491). The new form of message also indicates the largest free block that the
linker could find. Unless there is a single space large enough to accommodate the psect, the linker
will issue this message. Often when there is banking or paging involved the largest free space is
much smaller than the total amount of space remaining.

(1347) can’t find 0x* words (0x* withtotal) for psect '"*' in segment "*'" (largest unused
contiguous range 0x %1X) (Linker)

See also message (593). The new form of message also indicates the largest free block that the
linker could find. Unless there is a single space large enough to accommodate the psect, the linker
will issue this message. Often when there is banking or paging involved the largest free space is
much smaller than the total amount of space remaining.

(1348) enum tag '"*'" redefined (from *:%) (Parser)

More than one enum tag with the same name has been defined, The previous definition is indicated
in the message.

enum VALS { ONE=1, TWO, THREE };
enum VALS { NINE=9, TEN }; /* oops -- is INPUT the right tag name? */

"non

(1350) pointer operands to must reference the same array (Code Generator)

If two addresses are subtracted, the addresses must be of the same object to be ANSI compliant.

int * ip;
int fred, buf[20];
ip = &buf[0] - &fred; // oops --second operand must be an address of

// a "buf" element

498

Error and Warning Messages

(1352) truncation of operand value (0x*) to * bits (Assembler)

The operand to an assembler instruction was too large and was truncated.

movlw 0x321 ; oops -— is this the right value?

(1354) ignoring configuration setting for unimplemented word * (Driver)

A configuration word setting was specified for a word that does not exist on the target device.

_ _CONFIG(3, 0x1234); /* config word 3 does not exist on an 18C801 */

(1355) inline delay argument too large (Code Generator)

The inline delay sequence _delay has been used, but the number of instruction cycles requested is
too large. Use this routine multiple times to achieve the desired delay length.

#include <htc.h>
void main(void) {
delay (0x400000); /* oops -- cannot delay by this number of cycles */

(1356) fixup overflow referencing * * (0x*) into * byte* at 0x*/0x* -> 0x* (*** */0x*) (Linker)
See also message (477). This form of the message calculates the address of the offending instruction
taking into account the delta value of the psect which contains the instruction.

(1357) fixup overflow storing 0x* in * byte* at 0x*/0x* -> Ox* (*** */(x*) (Linker)
See also message (477). This form of the message calculates the address of the offending instruction
taking into account the delta value of the psect which contains the instruction.

(1358) no space for * temps (*) (Code Generator)
The code generator was unable to find a space large enough to hold the temporary variables (scratch
variables) for this program.

(1359) no space for * parameters (Code Generator)
The code generator was unable to find a space large enough to hold the parameter variables for a

particular function.

499

Error and Warning Messages

(1360) no space for auto/param * (Code Generator)

The code generator was unable to find a space large enough to hold the aut o variables for a particular
function. Some parameters passed in registers may need to be allocated space in this auto area as
well.

(1361) syntax error in configuration argument (Parser)
The argument to #pragma config was malformed.

#pragma config WDT /* oops -- is WDT on or off? */
(1362) configuration setting *=* redefined (Code Generator)
The same config pragma setting has been issued more than once with different values.

#pragma config WDT=OFF
#pragma config WDT=ON /* oops -- is WDT on or off? */

(1363) unknown configuration setting (* = *) used (Driver)
The configuration value and setting is not known for the target device.
#pragma config WDR=ON /* oops -- did you mean WDT? */

(1364) can’t open configuration registers data file * (Driver)

The file containing value configuration settings could not be found.

(1365) missing argument to pragma ''varlocate" (Parser)
The argument to #pragma varlocate was malformed.

#pragma varlocate /* oops -- what do you want to locate & where? */
(1366) syntax error in pragma ''varlocate" (Parser)
The argument to #pragma varlocate was malformed.

#pragma varlocate fred /* oops -- which bank for fred? */

500

Error and Warning Messages

(1367) end of file in _asm (Parser)

An end-of-file marker was encountered inside a _asm _endasm block.

(1368) assembler message: * (Assembler)
Displayed is an assembler advisory message produced by the MESSG directive contained in the
assembler source.

(1369) can’t open proc file * (Driver)

The proc file for the selected device could not be opened.

(1371) float type can’t be bigger then double type; double has been changed to * bits (Driver)

Use of the —-float and --double options has result in the size of the double type being smaller
than that of the float type. This is not permitted by the C Standard. The double type size has been
increased to be that indicated.

(1375) multiple interrupt functions (* and *) defined for device with only one interrupt vector
(Code Generator)

The named functions have both been qualified interrupt, but the target device only supports one
interrupt vector and hence one interrupt function.

interrupt void isr_lo(void) {

/]
}
interrupt void isr_hi (void) {
/] ...
}
(1376) initial value (*) too large for bitfield width (*) (Code Generator)

A structure with bit-fields has been defined an initialized with values. The value indicated it too
large to fit in the corresponding bitfield width.

struct {
unsigned flag :1;
unsigned mode :3;
}
foobar={1,100}; //oops, 100 is too large for a 3-bit wide object

501

Error and Warning Messages

(1377) no suitable strategy for this switch (Code Generator)

The compiler was unable to determine the switch strategy to use to encode a C switch statement
based on the code and your selection using the #pragma switch directive. You may need to choose
a different strategy.

(1387) inline delay argument must be constant (Code Generator)

The __delay inline function can only take a constant expression as its argument.

int delay_val = 99;
__delay(delay_val); // oops, argument must be a constant expression

(1390) identifier specifies insignificant characters beyond maximum identifier length (Parser)

An identifier has been used that is so long that it exceeds the set identifier length. This may mean
that long identifiers may not be correctly identified and the code will fail. The maximum identifier
length can be adjusted using the -N option.

int theValueOfThePortAfterTheModeBitsHaveBeenSet; // oops,
// make your symbol shorter or increase the maximum
// identifier length

(1393) possible hardware stack overflow detected, estimated stack depth: * (Code
Generator)

The compiler has detected that the call graph for a program may be using more stack space that
allocated on the target device. If this is the case, the code may fail. The compiler can only make
assumptions regarding the stack usage when interrupts are involved and these lead to a worst-case
estimate of stack usage. Confirm the function call nesting if this warning is issued.

(1394) attempting to create memory range (* - *) larger than page size, * (Driver)

The compiler driver has detected that the memory settings include a program memory “page” that
is larger than the page size for the device. This would mostly likely be the case if the —~—ROM option
is used to change the default memory settings. Consult you device data sheet to determine the page
size of the device you are using and ensure that any contiguous memory range you specify using the
--ROM option has a boundary that corresponds to the device page boundaries.

--ROM=100-1fff

502

Error and Warning Messages

The above may need to be paged. If the page size is 800h, the above could specified as

--ROM=100-7f£f,800-£££,1000-17££,1800-1£fff

(1395) notable code sequence candidate suitable for compiler validation suite detected (*)
(Code Generator)

The compiler has in-built checks that can determine if combinations of internal code templates have
been encountered. Where unique combinations are uncovered when compiling code, this message
is issued. This message is not an error or warning, and its presence does not indicate possible code
failure, but if you are willing to participate, the code you are compiling can be sent to Support to
assist with the compiler testing process.

(1396) ''*'" positioned in the * memory region (0x* - 0x*) reserved by the compiler (Code
Generator)

Some memory regions are reserved for use by the compiler. These regions are not normally used
to allocate variables defined in your code. However, by making variables absolute, it is possible
to place variables in these regions and avoid errors that would normally be issued by the linker.
(Absolute variables can be placed at any location, even on top of other objects.) This warning from
the code generator indicates that an absolute has been detected that will be located at memory that
the compiler will be reserving. You must locate the absolute variable at a different location. This
message will commonly be issued when placing variables in the common memory space.

char shared @ 0x7; // oops, this memory is required by the compiler

(1397) unable to implement non-stack call to ''*''; possible hardware stack overflow (Code
Generator)

The compiler must encode a C function call without using a CALL assembly instruction and the
hardware stack (and instead use a lookup table), but is unable to. A call might be required if the
function is called indirectly via a pointer, but if the hardware stack is already full, an additional call
will cause a stack overflow.

(1401) eeprom qualified variables cannot be accessed from both interrupt and mainline code
(Code Generator)

All eeprom variables are accessed via routines which are not reentrant. Code might fail if an attempt
is made to access eeprom variables from interrupt and main-line code. Avoid accessing eeprom
variables in interrupt functions.

503

Error and Warning Messages

(1402) a pointer to eeprom cannot also point to other data types (Code Generator)

A pointer cannot have targets in both the eeprom space and ordinary data space.

(1404) unsupported: * (Parser)
The unsupported __attribute__has been used to indicate that some code feature is not supported.
The message printed will indicate the feature that is not supported.

(1406) auto eeprom variables are not supported (Code Generator)
Variables qualified as eeprom cannot be auto. You can define static local objects qualified as
eepronm, if required.

(1407) bit eeprom variables are not supported (Code Generator)

Variables qualified as eeprom cannot have type bit.

(1408) ignoring initialization of far variables (Code Generator)
Variables qualified as far cannot be assigned an intial value. Assign the value later in the code.

far int chan = 0x1234; // oops -- you can’t assign a value here

(1409) Warning number used with pragma '"'warning'' is invalid (Parser)

The message number usd with the warning pragma is below zero or larger than the highest mesasge
number available.

#pragma warning disable 1316 13350 // oops -- maybe number 13357

(1410) Cannot assign the result of an invalid function pointer (Code Generator)

The compiler will allow some functions to be called via a constant cast to be a function pointer, but
not all. The address specified is not valid for this device.

foobar += ((int (*) (int))0x0) (77);
// oops -- you cannot call a function with a NULL pointer
(1411) Additional ROM range out of bounds (Driver)
Program memory specified with the ——ROM option is outside of the on-chip, or external, memory

range supported by this device.

504

Error and Warning Messages

(1412) missing argument to pragma ''warning disable'' (Parser)

Following the #pragma warning disable should be a comma-separated list of message numbers
to disable.

#pragma warning disable // oops -- what messages are to be disabled?
Try something like the folllwing.
#pragma warning disable 1362
(0) delete what ? (Libr)
The librarian requires one or more modules to be listed for deletion when using the d key, e.g.:
libr d c:\ht-pic\lib\pic704-c.lib
does not indicate which modules to delete. try something like:

libr d c:\ht-pic\lib\pic704-c.lib wdiv.obj

(0) incomplete ident record (Libr)

The IDENT record in the object file was incomplete. Contact HI-TECH Support with details.

(0) incomplete symbol record (Libr)

The SYM record in the object file was incomplete. Contact HI-TECH Support with details.

(0) library file names should have .lib extension: * (Libr)

Use the . 1ib extension when specifying a library filename.

(0) module * defines no symbols (Libr)

No symbols were found in the module’s object file. This may be what was intended, or it may mean
that part of the code was inadvertently removed or commented.

505

Error and Warning Messages

(0) replace what ? (Libr)

The librarian requires one or more modules to be listed for replacement when using the r key, e.g.:
libr r lcd.lib

This command needs the name of a module (. obj file) after the library name.

506

Appendix C

Chip Information

The following table lists all devices currently supported by HI-TECH C Compiler for PIC18 MCUs.

Table C.1: Devices supported by HI-TECH C Compiler for PIC18 MCUs

DEVICE ROMSIZE | RAMSIZE | EEPROMSIZE EXTMEM
18C242 4000 200

18C252 8000 600

18C442 4000 200

18C452 8000 600

18C601 0 600 0-1FFFFF
18C658 8000 600

18C801 0 600 0-1FFFFF
18C858 8000 600

18F1220 1000 100

18F1230 1000 100

18F1320 2000 100

18F1330 2000 100

18F13K22 2000 100

18F13K50 2000 200

18F14K22 4000 200

18F14K22LIN 4000 200

18F14K50 4000 300

18F2220 1000 200

18F2221 1000 200

18F2320 2000 200

18F2321 2000 200

18F2331 2000 300

18F23K20 2000 200

18F23K22 2000 200

continued. . .

507

Chip Information

508

Table C.1: Devices supported by HI-TECH C Compiler for PIC18 MCUs

DEVICE ROMSIZE | RAMSIZE | EEPROMSIZE EXTMEM
18F2410 4000 300
18F242 4000 300
18F2420 4000 300
18F2423 4000 300
18F2431 4000 300
18F2439 3000 280
18F2450 4000 300
18F2455 6000 800
18F2458 6000 800
18F248 4000 300
18F2480 4000 300
18F24J10 3FF8 400 20000-1FFFFF
18F24J11 3FF8 ECO
18F24J50 3FF8 ECO
18F24K20 4000 300
18F24K22 4000 300
18F2510 8000 600
18F2515 C000 F80
18F252 8000 600
18F2520 8000 600
18F2523 8000 600
18F2525 C000 F80
18F2539 6000 580
18F2550 8000 800
18F2553 8000 800
18F258 8000 600
18F2580 8000 600
18F2585 C000 D00
18F25J10 7FF8 400 20000-1FFFFF
18F25J11 7FF8 ECO
18F25J50 7FF8 ECO
18F25K20 8000 600
18F25K22 8000 600
18F25K80 8000 E41
18F2610 10000 F80
18F2620 10000 F80
18F2680 10000 D00
18F2682 14000 D00
18F2685 18000 D00
18F26J11 FFF8 ECO
18F26J13 FFF8 EBO
18F26J50 FFF8 ECO
18F26J53 FFF8 EBO
18F26K20 10000 F60
18F26K22 10000 F38
continued. . .

Chip Information

Table C.1: Devices supported by HI-TECH C Compiler for PIC18 MCUs

DEVICE ROMSIZE | RAMSIZE | EEPROMSIZE EXTMEM
18F26K80 10000 E41
18F27J13 1FFF8 EBO
18F27J53 1FFF8 EBO
18F4220 1000 200
18F4221 1000 200
18F4320 2000 200
18F4321 2000 200
18F4331 2000 300
18F43K20 2000 200
18F43K22 2000 200
18F4410 4000 300
18F442 4000 300
18F4420 4000 300
18F4423 4000 300
18F4431 4000 300
18F4439 3000 280
18F4450 4000 300
18F4455 6000 800
18F4458 6000 800
18F448 4000 300
18F4480 4000 300
18F44J10 3FF8 400 20000-1FFFFF
18F44J11 3FF8 ECO
18F44J50 3FF8 ECO
18F44K20 4000 300
18F44K22 4000 300
18F4510 8000 600
18F4515 C000 F80
18F452 8000 600
18F4520 8000 600
18F4523 8000 600
18F4525 C000 F80
18F4539 6000 580
18F4550 8000 800
18F4553 8000 800
18F458 8000 600
18F4580 8000 600
18F4585 C000 D00
18F45J10 7TFF8 400 20000-1FFFFF
18F45J11 7TFF8 ECO
18F45J50 7TFF8 ECO
18F45K20 8000 600
18F45K22 8000 600
18F45K80 8000 E41
18F4610 10000 F80
continued. . .

509

Chip Information

Table C.1: Devices supported by HI-TECH C Compiler for PIC18 MCUs

DEVICE ROMSIZE | RAMSIZE | EEPROMSIZE EXTMEM
18F4620 10000 F80

18F4680 10000 D00

18F4682 14000 D00

18F4685 18000 D00

18F46J11 FFF8 ECO

18F46J13 FFF8 EBO

18F46J50 FFF8 ECO

18F46J53 FFF8 EBO

18F46K20 10000 F60

18F46K22 10000 F38

18F46K80 10000 E41

18F47J13 1FFF8 EBO

18F47J53 1FFF8 EBO

18F6310 2000 300 2000-1FFFFF
18F6390 2000 300 2000-1FFFFF
18F6393 2000 300 2000-1FFFFF
18F63J11 1FF8 400 20000-1FFFFF
18F63J90 1FF8 400 20000-1FFFFF
18F6410 4000 300 2000-1FFFFF
18F6490 4000 300 2000-1FFFFF
18F6493 4000 300 2000-1FFFFF
18F64J11 3FF8 400 20000-1FFFFF
18F64J90 3FF8 400 20000-1FFFFF
18F6520 8000 800

18F6525 C000 F0O

18F6527 C000 F60

18F6585 C000 D00

18F65J10 7FF8 800 20000-1FFFFF
18F65J11 7FF8 800 20000-1FFFFF
18F65J15 BFF8 800 20000-1FFFFF
18F65J50 7FF8 F40 8000-1FFFFF
18F65J90 7FF8 800 20000-1FFFFF
18F65K22 8000 800

18F65K80 8000 E41

18F65K90 8000 800

18F6620 10000 F0O

18F6621 10000 F0O

18F6622 10000 F60

18F6627 18000 F60

18F6628 18000 F60

18F6680 10000 D00

18F66J10 FFF8 800 20000-1FFFFF
18F66J11 FFF8 F40 10000-1FFFFF
18F66J15 17FF8 F60 20000-1FFFFF
18F66J16 17FF8 F40 18000-1FFFFF
continued. . .

510

Chip Information

Table C.1: Devices supported by HI-TECH C Compiler for PIC18 MCUs

DEVICE ROMSIZE | RAMSIZE | EEPROMSIZE EXTMEM
18F66J50 FFF8 F40 10000- 1 FFFFF
18F66J55 17FF8 F40 18000-1FFFFF
18F66J60 FFF8 EEO 20000-1FFFFF
18F66J65 17FF8 EEO 20000-1FFFFF
18F66J90 FFF8 F54 20000-1FFFFF
18F66J93 FFF8 F54 20000-1FFFFF
18F66K?22 10000 F16

18F66K80 10000 E41

18F66K90 10000 EF4

18F6720 20000 F0O

18F6722 20000 F60

18F6723 20000 F60

18F67J10 1FFF8 F60 20000-1FFFFF
18F67J11 1FFF8 F40 20000-1FFFFF
18F67J50 1FFF8 F40 20000-1FFFFF
18F67J60 1FFF8 EEO 20000-1FFFFF
18F67J90 1FFF8 F54 20000-1FFFFF
18F67J93 1FFF8 F54 20000-1FFFFF
18F67K22 20000 F16

18F67K90 20000 EF4

18F8310 2000 300 1000-1FFFFF
18F8390 2000 300 2000-1FFFFF
18F8393 2000 300 2000-1FFFFF
18F83J11 1FF8 400 20000-1FFFFF
18F83J90 1FF8 400 20000-1FFFFF
18F8410 4000 300 2000-1FFFFF
18F8490 4000 300 2000-1FFFFF
18F8493 4000 300 2000-1FFFFF
18F84J11 3FF8 400 20000-1FFFFF
18F84J90 3FF8 400 20000-1FFFFF
18F8520 8000 300 8000-1FFFFF
18F8525 C000 F0O C000-1FFFFF
18F8527 C000 F60 C000-1FFFFF
18F8585 C000 D00 C000-1FFFFF
18F85J10 7TFF8 800 20000-1FFFFF
18F85J11 7TFF8 800 20000-1FFFFF
18F85J15 BFF8 800 20000-1FFFFF
18F85J50 7FF8 F40 8000-1FFFFF
18F85J90 7TFF8 800 20000-1FFFFF
18F85K22 8000 800

18F85K90 8000 800

18F8620 10000 FOO 10000-1FFFFF
18F8621 10000 F0O 10000-1FFFFF
18F8622 10000 F60 10000-1FFFFF
18F8627 18000 F60 18000-1FFFFF
continued. . .

511

Chip Information

512

Table C.1: Devices supported by HI-TECH C Compiler for PIC18 MCUs

DEVICE ROMSIZE | RAMSIZE | EEPROMSIZE EXTMEM
18F8628 18000 F60 18000- 1 FFFFF
18F8680 10000 D00 10000-1FFFFF
18F86J10 FFF8 800 20000-1FFFFF
18F86J11 FFF8 F40 10000-1FFFFF
18F86J15 17FF8 F60 20000-1FFFFF
18F86J16 17FF8 F40 18000-1FFFFF
18F86J50 FFF8 F40 10000-1FFFFF
18F86J55 17FF8 F40 18000-1FFFFF
18F86J60 FFF8 EEO 20000-1FFFFF
18F86J65 17FF8 EEO 20000-1FFFFF
18F86J72 FFF8 F54 20000-1FFFFF
18F86J90 FFF8 F54 20000-1FFFFF
18F86J93 FFF8 F54 20000-1FFFFF
18F86K22 10000 F16

18F86K90 10000 EF4

18F8720 20000 F00 20000-1FFFFF
18F8722 20000 F60 20000-1FFFFF
18F8723 20000 F60 20000-1FFFFF
18F87J10 1FFF8 F60 20000-1FFFFF
18F87J11 1FFF8 F40 20000-1FFFFF
18F87J50 1FFF8 F40 20000-1FFFFF
18F87J60 1FFF8 EEO 20000-1FFFFF
18F87J72 1FFF8 F54 20000-1FFFFF
18F87J90 1FFF8 F54 20000-1FFFFF
18F87J93 1FFF8 F54 20000-1FFFFF
18F87K22 20000 F16

18F87K90 20000 EF4

18F96J60 FFF8 EEO 20000-1FFFFF
18F96J65 17FF8 EEO 20000-1FFFFF
18F97J60 1FFF8 EEO 20000-1FFFFF
18LF13K22 2000 100

18LF13K50 2000 200

18LF14K22 4000 200

18LF14K50 4000 300

18LF23K22 2000 200

18LF24J10 3FF8 400 20000-1FFFFF
18LF24J11 3FF8 ECO

18LF24150 3FF8 ECO

18LF24K22 4000 300

18LF25J10 7FF8 400 20000-1FFFFF
18LF25J11 7FF8 ECO

18LF25J50 7FF8 ECO

18LF25K22 8000 600

18LF25K80 8000 E41

18LF26J11 FFF8 ECO

continued. . .

Chip Information

Table C.1: Devices supported by HI-TECH C Compiler for PIC18 MCUs

DEVICE ROMSIZE | RAMSIZE | EEPROMSIZE EXTMEM
18LF26J13 FFF8 EBO
18LF26J50 FFF8 ECO
18LF26J53 FFF8 EBO
18LF26K22 10000 F38
18LF26K80 10000 E41
18LF27J13 1FFF8 EBO
18LF27J53 1FFF8 EBO
18LF43K22 2000 200
18LF44J10 3FF8 400 20000-1FFFFF
18LF44J11 3FF8 ECO
18LF44J50 3FF8 ECO
18LF44K22 4000 300
18LF45J10 TFF8 400 20000-1FFFFF
18LF45J11 7TFF8 ECO
18LF45J50 7FF8 ECO
18LF45K22 8000 600
18LF45K80 8000 E41
18LF46J11 FFF8 ECO
18LF46J13 FFF8 EBO
18LF46J50 FFF8 ECO
18LF46J53 FFF8 EBO
18LF46K22 10000 F38
18LF46K80 10000 E41
18LF47J13 1FFF8 EBO
18LF47J53 1FFF8 EBO
18LF65K80 8000 E41
18LF66K80 10000 E41

513

Chip Information

514

Index

! macro quote character, 172
\ command file character, 23
. psect address symbol, 194
.as files, 24
.cmd files, 206
.crf files, 51, 155
.hex files, 25
ib files, 204, 205
Ink files, 197
st files, 49
.obj files, 156, 194, 205
.opt files, 155
.pl files, 24
.pro files, 59
.sym files, 193, 196
/ psect address symbol, 194
;; comment suppression characters, 172
<> macro quote characters, 172
? character
in assembly labels, 160
??nnnn type symbols, 161, 173
@ command file specifier, 23
#asm directive, 134
#define, 42
#include directive, 22
#pragma directives, 143
#undef, 48
$ character
in assembly labels, 160
$ location counter symbol, 161

% macro argument prefix, 172

& assembly macro concatenation character, 172

_ character

in assembly labels, 160
_EEPROMSIZE, 141
_ERRATA_TYPES, 142
_FLASH_ERASE_SIZE, 141
_FLASH_WRITE_SIZE, 141
_HTC_EDITION_, 140
_HTC_VER_MAIJOR_, 141
_HTC_VER_MINOR _, 141
_HTC_VER_PATCH_, 141
_ICDROM_END, 141
_ICDROM_START, 141
MPC, 141
_PIC18, 141
_PLIB, 143
_RAMSIZE, 141
_ROMSIZE, 141
__Bxxxx type symbols, 152
__CONFIG macro, 87, 88, 228
__DATE__, 143
_ EEPROM_DATA, 89
_ EEPROM_DATA macro, 229
__FILE_ , 142
__Hxxxx type symbols, 152
__IDLOC macro, 230
_LINE__, 142
__Lxxxx type symbols, 152
__MPLAB_ICD__, 141

515

INDEX

INDEX

_ MPLAB_PICKIT2_ , 141
_ MPLAB_PICKIT3__, 141
_ MPLAB_REALICE__, 141
_ PICCI18__, 141

__TIME__, 143

_serialO label, 63

24-bit doubles, 52, 54

32-bit doubles, 52, 54

abs function, 233
abs PSECT flag, 167
absolute address, 157
absolute object files, 193, 194
absolute psects, 167, 168
absolute variables, 115, 157
bits, 96
access bank, 103, 157
acos function, 234
additional memory ranges, 60, 61
addresses
byte, 217
link, 189, 194
load, 189, 194
word, 217
addressing unit, 167
ALIGN directive, 173
alignment
within psects, 173
ANSI standard
conformance, 64
divergence from, 83
implementation-defined behaviour, 83
argument area, 117
argument passing, 117
ASCII characters, 96
asctime function, 235
asin function, 237
asm() C directive, 134
assembler, 153

516

controls, 176
directives, 165
options, 154
pseudo-ops, 165
assembler control
COND, 176
EXPAND, 176
INCLUDE, 178
LIST, 178
NOCOND, 178

NOEXPAND, 178

NOLIST, 179
NOXREEF, 179
PAGE, 179
SPACE, 179
SUBTITLE, 179
TITLE, 179
XREF, 179
assembler directive
ALIGN, 173
DABS, 170
DB, 170
DS, 170
DW, 170
ELSE, 171
ELSIF, 171
END, 33, 165
ENDIF, 171
ENDM, 172
EQU, 158, 169
FNCALL, 171
FNROOT, 171

GLOBAL, 162, 165

IF, 171
IRP, 174
IRPC, 174

LOCAL, 161, 173
MACRO, 158, 172

ORG, 169

INDEX

INDEX

PROCESSOR, 156, 175
PSECT, 164, 167

embedding in C code, 131
expressions, 162

REPT, 174 generating from C, 48
SET, 158, 169 identifiers, 160
SIGNAT, 150, 176 data typing, 161
assembler files in-line, 136
preprocessing, 58 include files, 178
assembler listings, 49 initializing
assembler optimizer bytes, 170
debug information and, 156 words, 170

enabling, 156
viewing output of, 155
assembler option

labels, 131, 158, 162
line numbers, 156
location counter, 161

-A, 155 multi-character constants, 160
-C, 155 operators, 164
-Cchipinfo, 155 psects for, 131
-E, 155 radix specifiers, 160
-Flength, 155 relative jumps, 161
-H, 155 relocatable expression, 164
-1, 155 repeating macros, 174
-Llistfile, 156 reserving memory, 170
-0, 156 special characters, 159
-Ooutfile, 156 special comment strings, 159
-Twidth, 156 statement format, 158
-V, 156 strings, 160
-X, 156 volatile locations, 159
-processor, 156 assembly labels, 131, 158, 162
assembler-generated symbols, 161 ? character, 160
assembly, 153 $ character, 160
accessing C variables from, 135 _chacrter, 160
C prototypes for, 131 making globally accessable, 165
called from C code, 131 scope, 162, 165
character constants, 160 assembly listings
character set, 158 blank lines, 179
comments, 158 disabling macro expansion, 178
conditional, 171 enabling, 178
constants, 160 excluding conditional code, 178
default radix, 160 expanding macros, 155, 176
delimiters, 159 generating, 156

517

INDEX

INDEX

hexadecimal constants, 155
including conditional code, 176
new page, 179
page length, 155
page width, 156
radix specification, 155
subtitles, 179
titles, 179

assembly macros, 172
! character, 172
% character, 172
& symbol, 172
concatenation of arguments, 172
quoting characters, 172
suppressing comments, 172

assert function, 238

atan function, 239

atan2 function, 240

atof function, 241

atoi function, 242

atol function, 243

auto switch type, 146

auto variable area, 117

auto variables, 110

Avocet symbol file, 197

banked access, 157
BANKMASK macro, 133, 158
banks

RAM banks, 103
BANKSEL directive, 133, 175
bankx qualifier, 102
base specifier, see radix specifier
bases

C source, 93
biased exponent, 98
big endian format, 218
binary constants

assembly, 160

518

C,93
bit clear instruction, 88
Bit instructions, 88
bit manipulation macros, 88
bit PSECT flag, 167
bit set instruction, 88
bit types
absolute, 96
in assembly, 167
bit-addressable Registers, 96
bit-fields, 99
initializing, 100
unamed, 100
blocks, see psects
bootloader, 61, 214, 222
bootloaders, 62
bsearch function, 244
bss psect, 125, 188
clearing, 188
byte addresses, 217

C standard libraries, 29, 30
ceil function, 246
cgets function, 247
char types, 96
character constants, 94
assembly, 160
checksum endianism, 50, 218
checksum psect, 124
checksum specifications, 207
checksums, 50, 214, 218
algorithms, 50, 218
endianism, 50, 218
chipinfo files, 155
cinit psect, 124
class PSECT flag, 167
classes, 191
address ranges, 191
boundary argument, 196

INDEX

INDEX

upper address limit, 196
clib suboption, 29
clrwdt instruction, 86
CLRWDT macro, 249
COD file, 58
code protection fuses, 86
command files, 23
command line driver, 21
command lines

HLINK, long command lines, 197

long, 23, 206

verbose option, 49
common access, 157
compiler errors

format, 38
compiler generated psects, 123
compiler-generate input files, 28
compiling

to assembly file, 48

to object file, 42
COND assembler control, 176
conditional assembly, 171
config psect, 124
config_read() function, 250
config_write() function, 250
configuration

word, 124
configuration fuses, 86
console I/0O functions, 152
const psect, 124, 125
const qualifier, 101
constants

assembly, 160

C specifiers, 93

character, 94

string, see string literals
context retrieval, 128
context saving, 127
copyright notice, 48

cos function, 252
cosh function, 253
cputs function, 254
creating
libraries, 205
creating new, 123
CREF application, 155, 209
CREF option
-Fprefix, 209
-Hheading, 210
-Llen, 210
-Ooutfile, 210
-Pwidth, 210
-Sstoplist, 210
-Xprefix, 210
CREF options, 209
cromwell application, 211
cromwell option
-B, 214
-C, 213
-D, 213
-E, 213
-F, 213
-Ikey, 213
-L,213
-M, 214
-N, 211
-Okey, 213
-P, 211
-V, 214
cromwell options, 211
cross reference
disabling, 179
generating, 209
list utility, 209
cross reference file, 155
generation, 155
cross reference listings, 51
excluding header symbols, 209

519

INDEX

INDEX

excluding symbols, 210
headers, 210
output name, 210
page length, 210
page width, 210
cross referencing
enabling, 179
cstack psect, 126
ctime function, 255

DABS directive, 170
data psect, 126, 188
copying, 189
data psects, 32
data types, 93
16-bit integer, 96
24-bit integer, 97
8-bit integer, 96
assembly, 161
char, 96
floating point, 98
int, 96
short, 96
short long, 97
DB directive, 170
debug information, 43
assembler, 156
optimizers and, 156
default psect, 165
default radix
assembly, 160
delta PSECT flag, 167
delta psect flag, 191
dependencies, 63
dependency checking, 26
destination register, 157
device selection, 50
device_id_read() function, 231, 232, 256
DI macro, 258

520

directives
asm, C, 134
assembler, 165
EQU, 162
div function, 260
divide by zero
result of, 121
doprnt.c source file, 34
doprnt.pre, 35
double type, 52, 54
driver
command file, 23
command format, 22
input files, 22
long command lines, 23
options, 22
single step compilation, 25
driver option
—CODEOFFSET, 51
-DOUBLE=type, 52, 54
—ERRATA=type, 53
—-ERRFORMAT=format, 53
—ERRORS=number, 53
—-LANG=language, 55
—~MSGFORMAT=format, 53
-NODEL, 25
—OUTPUT=type, 58
-PASS1, 24, 27
-PRE, 27
—RUNTIME, 29
—RUNTIME-=type, 31-33, 63
—WARN-=level, 65
—~WARNFORMAT=format, 53
-C, 27,42
-Efile, 43
-G, 43
-1, 44
-L, 44, 45
-M, 47

INDEX

INDEX

-0, 35
-S, 48
driver options

—WARNFORMAT=format, 65

DS directive, 170
DW directive, 170

EEPROM Data, 89
EEPROM data, 124
eeprom memory
initializing, 89
reading, 90
writing, 90
eeprom qualifier, 89
eeprom variables, 89
eeprom_data psect, 124
EEPROM_READ, 90
eeprom_read function, 261
EEPROM_WRITE, 90
eeprom_write function, 261
EI macro, 258
ELSE directive, 171
ELSIF directive, 171
embedding serial numbers, 223
END directive, 33, 165
end_init psect, 124
endasm directive, 134
ENDIF directive, 171
ENDM directive, 172
enhanced symbol files, 193
environment variable
HTC_ERR_FORMAT, 38
HTC_MSG_FORMAT, 38
HTC_WARN_FORMAT, 38
EQU directive, 158, 162, 169
equating assembly symbols, 169
errata workarounds, 30, 53
error files
creating, 192

error messages, 43
formatting, 38
LIBR, 207
eval_poly function, 263
exceptions, 126
exp function, 264
EXPAND assembler control, 176
exponent, 98
expressions
assemby, 162
relocatable, 164
External memory interface, 52
external program space, 103
external variables, 103

fabs function, 265

far keyword, 103

far variables, 103

fast interrupt save/restore, 127

fast interrupts, 127

file extensions, 22

file formats
assembler listing, 49
Avocet symbol, 197
command, 206
creating with cromwell, 211
cross reference, 155, 209
cross reference listings, 51
dependency, 63
DOS executable, 194
enhanced symbol, 193
library, 204, 205
link, 197
object, 42, 194, 205
preprocessor, 58
prototype, 59
specifying, 58
symbol, 193
TOS executable, 194

521

INDEX INDEX
files getchar function, 271

intermediate, 5658 getche function, 270

output, 57 gets function, 272

temporary, 56, 57
fill memory, 214
filling unused memory, 53, 218
Flash and EEPROM Libraries, 30
floating point data types, 98
biased exponent, 98
exponent, 98
format, 98
mantissa, 98
floating suffix, 94
floor function, 268
fmod function, 267
FNCALL directive, 171
FNROOT directive, 171
frexp function, 269
function
return values, 119
structures, 119
function pointers, 109
function prototypes, 151, 176
function return values, 119
function signatures, 176
functions
argument passing, 117
getch, 152
interrupt, 126
interrupt qualifier, 126
kbhit, 152
putch, 152
recursion, 83
return values, 119
returning from, 126
signatures, 150
written in assembler, 131

getch function, 152, 270

522

GLOBAL directive, 162, 165
global optimization, 57
global PSECT flag, 167
global symbols, 188

gmtime function, 273

hardware
initialization, 33
header files
htc.h, 96
problems in, 64
HEX file format, 221
HEX file map, 222
hex files
address alignment, 62
address map, 214
calculating check sums, 214
converting to other Intel formats, 214
data record, 62, 217
detecting instruction sequences, 214
embedding serial numbers, 215
extended address record, 222
filling unused memory, 53, 214
find and replacing instructions, 214
merging multiple, 214
multiple, 192
record length, 62, 214, 221
hexadecimal constants
assembly, 160
hexmate application, 25, 214
hexmate option
+prefix, 217
-CK, 218
-FILL, 218, 222
-FIND, 220
-FIND...,.DELETE, 221

INDEX

INDEX

-FIND...,REPLACE, 221
-FORMAT, 221
-HELP, 222
-LOGFILE, 222
-MASK, 223
-0, 223
-SERIAL, 63, 223
-SIZE, 224
-STRING, 224
-STRPACK, 225
-addressing, 217
-break, 217
file specifications, 215
hexmate options, 215
HI-TIDE, 55
HI_TECH_C, 140
high priority interrupts, 126
htc.h, 96
HTC_ERR_FORMAT, 38
HTC_MSG_FORMAT, 38
HTC_WARN_FORMAT, 38

1/0
console I/0 functions, 152
serial, 152
STDIO, 152
ICD support, 127
ID Locations, 88
ID locations, 124
idata psect, 62, 124
identifiers
assembly, 160
IDLOC, 88
idloc psect, 124
idloc_read() function, 275
idloc_write() function, 275
IEEE floating point format, 98
IF directive, 171
Implementation-defined behaviour, 83

division and modulus, 121
shifts, 121
in-line assembly, 127, 136
INCLUDE assembler control, 178
include files
assembly, 178
incremental builds, 26
INHX32, 214, 222
INHX8M, 214, 222
init psect, 125
initialization of variables, 32
inline pragma directive, 147
input files, 22
int data types, 96
intcode psect, 125
intcodelo psect, 125
integer suffix
long, 93
unsigned, 93
integral constants, 93
integral promotion, 120
Intermediate files, 58
intermediate files, 22, 26, 57
interrupt functions, 126
calling functions from, 127
context retrieval, 128
context saving, 127
returning from, 126
interrupt keyword, 126
interrupt priority, 126
interrupt service routines, 126
interrupts
configuring priorities, 130
fast, 127
handling in C, 126
priority of, 126
use of shadow registers, 127
Interrupts fast, 127
IRP directive, 174

523

INDEX

INDEX

IRPC directive, 174
isalnum function, 277
isalpha function, 277
isatty function, 279
isdigit function, 277
islower function, 277
itoa function, 280

kbhit function, 152
keyword
auto, 110
bankx, 102
far, 103
interrupt, 126
low_priority, 126
near, 102, 103
persistent, 102
keywords
disabling non-ANSI, 64

L.obj output file, 25

label field, 158

labels
assembly, 131, 158, 162
local, 173

labs function, 281

language support, 37

Idexp function, 282

1div function, 283

LFSR instruction, 136, 158

LIBR, 204
command line arguments, 204
error messages, 207
listing format, 206
long command lines, 206
module order, 206

librarian, 204
command files, 206
command line arguments, 204, 206

524

error messages, 207
listing format, 206

long command lines, 206
module order, 206

libraries

adding files to, 205

creating, 205

deleting files from, 205

EEPROM, 30

excluding, 62

flash, 30

flash and eeprom library naming convention,
30

format of, 204

linking, 196

listing modules in, 205

Microchip Compatible Peripheral Libraries,
30, 62

module order, 206

scanning additional, 44

used in executable, 194

library

difference between object file, 204
manager, 204

library function

__CONFIG, 228
_ EEPROM_DATA, 229
__IDLOC, 230
abs, 233

acos, 234
asctime, 235
asin, 237

assert, 238

atan, 239

atan2, 240

atof, 241

atoi, 242

atol, 243
bsearch, 244

INDEX

INDEX

ceil, 246

cgets, 247
config_read(), 250
config_write(), 250
cos, 252

cosh, 253

cputs, 254

ctime, 255
device_id_read(), 231, 232, 256
div, 260
eeprom_read, 261
eeprom_write, 261
eval_poly, 263
exp, 264

fabs, 265

floor, 268

fmod, 267

frexp, 269

getch, 270
getchar, 271
getche, 270

gets, 272

gmtime, 273
idloc_read(), 275
idloc_write(), 275
isalnum, 277
isalpha, 277
isatty, 279

isdigit, 277
islower, 277

itoa, 280

labs, 281

Idexp, 282

1div, 283
localtime, 284
log, 286

log10, 286
longjmp, 287

Itoa, 289

memcemp, 290
memmove, 292
mktime, 293
modf, 295
os_tsleep, 297
pow, 298
printf, 34, 299
putch, 302
putchar, 303
puts, 305
gsort, 306
rand, 308
readtimerX, 310
round, 312
scanf, 313
setjmp, 315
sin, 317

sinh, 253

sqrt, 319
srand, 320
strcat, 321
strchr, 322
strcmp, 324
strcpy, 326
strcspn, 327
strichr, 322
stricmp, 324
stristr, 338
strlen, 328
strncat, 329
strncmp, 331
strncpy, 333
strnicmp, 331
strpbrk, 335
strrchr, 336
strrichr, 336
strspn, 337
strstr, 338
strtod, 339

525

INDEX INDEX
strtok, 343 linker option
strtol, 341 -Aclass=low-high, 191, 195
tan, 345 -Cpsect=class, 191
tanh, 253 -Dsymfile, 191
time, 346 -Eerrfile, 192
toascii, 348 -F, 192
tolower, 348 -Gspec, 192

toupper, 348
trunc, 349
ungetc, 350, 351
ungetch, 352
utoa, 353
va_arg, 354
va_end, 354
va_start, 354
vscanf, 313
writetimerX, 356
xtoi, 357
library macro
CLRWDT, 249
DI, 258
EI, 258
NOP, 296
RESET, 311
SLEEP, 318
limit PSECT flag, 168

limiting number of error messages, 53

link addresses, 189, 194
linker, 187
command files, 197

command line arguments, 189, 197

invoking, 197

long command lines, 197

passes, 204

symbols handled, 188
linker defined symbols, 152
linker errors

aborting, 193

undefined symbols, 193

526

-H+symfile, 193

-Hsymfile, 193

-1, 193

-Jerrcount, 193

-K, 193

-L, 193

-LM, 194

-Mmapfile, 194

-N, 194

-Nc, 194

-Ns, 194

-Ooutfile, 194

-Pspec, 194

-Qprocessor, 196

-Sclass=limit[,bound], 196

-Usymbol, 196

-Vavmap, 197

-Wnum, 197

-X, 197

-Z, 197
linker options, 189

adjusting use driver, 45

numbers in, 190
linking programs, 149
LIST assembler control, 178
list files

assembler, 49
little endian format, 93, 97, 218
load addresses, 189, 194
loadfsr, 158
LOCAL directive, 161, 173
local PSECT flag, 168

INDEX

INDEX

local psects, 188
local symbols, 49
suppressing, 156, 197
local variables, 110
auto, 110
static, 114
localtime function, 284
location counter, 161, 169
log function, 286
LOG10 function, 286
long data types, 97
long integer suffix, 93
longjmp function, 287
low priority interrupts, 126
1toa function, 289

MACRO directive, 158, 172
macros
disabling in listing, 178

expanding in listings, 155, 176

nul operator, 172
predefined, 140

repeat with argument, 174

undefining, 48
unnamed, 174
main function, 27, 31
mantissa, 98
map files, 194
generating, 47

processor selection, 196

segments, 199
symbol tables in, 194
width of, 197

maximum number of errors, 53

MDF, 36

memcmp function, 290
memmove function, 292
memory

external program space, 103

external RAM, 103
reserving, 60, 61
specifying, 60, 61
specifying ranges, 191
unused, 53, 194
memory pages, 168
memory summary, 64
merging hex files, 217
message
language, 37
message description files, 36

messages
disabling, 56
warning, 56

Microchip COF file, 58

Microchip Compatible Peripheral Libraries, 30,

62

mixing C and assembly, 131
mktime function, 293
modf function, 295
module, 22
modules

in library, 204

list format, 206

order in library, 206

used in executable, 194
MOVFF instruction, 136
moving code, 51
MPLAB, 55

build options, 45, 66, 73

ICD support, 127

plugin, 66
multi-character constants

assembly, 160
multiple hex files, 192

near keyword, 102, 103

NOCOND assembler control, 178
NOEXPAND assembler control, 178

527

INDEX

INDEX

NOLIST assembler control, 179
non-volatile memory, 102
non-volatile RAM, 102
NOP macro, 296
NOXREF assembler control, 179
numbers
C source, 93
in linker options, 190
nv psect, 126
nvbit psect, 102
nvram, 102
nvram psect, 102
nvrram psect, 102

object code, version number, 194
object files, 42
absolute, 193
relocatable, 187
specifying name of, 156
suppressing local symbols, 156
symbol only, 192
OBJTOHEX, 207
command line arguments, 207
objtohex application, 25
offsetting code, 51
operators
assembly, 164
Optimizations
assembler, 57
code generator, 57
debugging, 57
global, 57
optimizations

assembler, see assembler optimizer

optimizing assembly code, 155
options
assembler, 154
ORG directive, 169
os_tsleep function, 297

528

output
specifying name of, 47
output directory, 57
output file, 47
output file formats, 194
American Automation HEX, 58
Binary, 58
Bytecraft COD, 58
COFF, 58
ELF, 58
Intel HEX, 58
library, 58
Microchip COFF, 58
Motorola S19 HEX, 58
specifying, 58, 207
Tektronic, 58
UBROF, 58
output files, 57
Lobj, 25
names of, 23
overlaid memory areas, 193
overlaid psects, 168
ovrld PSECT flag, 168

p-code files, 22
PAGE assembler control, 179
parameter passing, 117
passing parameters to assembly, 131
persistent keyword, 102
persistent qualifier, 102
PIC18 MCU assembly language, 157
PICC18
predefined macros, 140
supported data types, 93
PICC18, see driver
PICC18 options
—-EMI, 52
—-SUMMARY-=type, 149
-C, 149

INDEX

INDEX

-S, 149
PICC18 output formats

American Automation Hex, 35

Binary, 35

Bytecraft, 35

Intel Hex, 35

Motorola Hex, 35

Tektronix Hex, 35

UBROF, 35
PICC18 options

—CHAR-=type, 96
pointer

qualifiers, 104
pointers, 104

16bit, 104

32 bit, 104

combining with type modifiers, 104

function, 109

to functions, 104
pow function, 298
powerup psect, 125
powerup routine, 31, 33
powerup.as, 33
pragma directives, 143
predefined symbols

preprocessor, 140
preprocessing, 48

assembler files, 48
preprocessor

macros, 42

path, 44
preprocessor directive

asm, 134

endasm, 134
preprocessor directives, 140

in assembly files, 158
preprocessor symbols

predefined, 140
printf

format checking, 143
printf function, 28, 299
printf_check pragma directive, 143
PROCESSOR directive, 156
processor ID data, 88
processor selection, 50, 175, 196
program entry point, 33, 165
program sections, 164
project name, 23
prototypes

for assembly code, 131
psect

bss, 125, 188

checksum, 124

cinit, 124

config, 124

const, 124, 125

cstack, 126

data, 126, 188

eeprom_data, 124

end_init, 124

idata, 62, 124

idloc, 124

init, 125

intcode, 125

intcodelo, 125

nv, 126

nvbit, 102

nvram, 102

nvrram, 102

powerup, 125

rbss, 62

text, 125
PSECT directive, 164, 167
PSECT directive flag

limit, 196
PSECT directive flags, 167

abs, 167

bit, 167

529

INDEX INDEX
class, 167 auto, 110
delta, 167 bankx, 102
global, 167 far, 103
limit, 168 near, 102
local, 168 persistent, 102
ovrld, 168 volatile, 159
pure, 168 qualifiers, 101, 102
reloc, 168 and auto variables, 110
size, 168 const, 101
space, 168 pointer, 104
with, 168 volatile, 101
psects, 123, 164, 188 quiet mode, 48
absolute, 167, 168
aligning within, 173 radix specifiers
alignment of, 168 assembly, 160
basic kinds, 188 binary, 93
class, 191, 196 C source, 93
compiler generated, 123 decimal, 93
default, 165 hexadecimal, 93
delta value of, 191 octal, 93
differentiating ROM and RAM, 168 RAM access bit, 157
for assembly code, 131 rand function, 308
linking, 187 rbss psect, 62
listing, 64 read-only variables, 101
local, 188 READTIMERX function, 310
maximum size of, 168 recursion, 83
page boundaries and, 168 redirecting errors, 43
specifying address ranges, 195 reference, 190, 198
specifying addresses, 191, 194 registers
struct, 119 shadow, 127
pseudo-ops special function, see special function regis-

assembler, 165
pure PSECT flag, 168
putch function, 152, 302
putchar function, 303
puts function, 305

gsort function, 306
qualifier

530

ters

regsused pragma directive, 145
relative jump, 161
RELOC, 192, 194
reloc PSECT flag, 168
relocatable

object files, 187
relocation, 187

INDEX

INDEX

relocation information

preserving, 193, 194
REPT directive, 174
reserving memory, 60, 61
reset

code executed after, 33
RESET macro, 311
RETFIE instruction, 126, 128, 157
RETLW instruction, 126
RETURN instruction, 126
return values, 119
rotate operation, 84
round function, 312
runtime environment, 63
RUNTIME option

clear, 62

clib, 62

init, 62

keep, 62

no_startup, 62

plib, 62
runtime startup

variable initialization, 32
runtime startup code, 31
runtime startup module, 28, 62

scale value, 167
scanf function, 313
search path
header files, 44
segment selector, 192
segments, see psects, 192, 199
serial I/0, 152
serial numbers, 63, 223
accessing, 63
SET directive, 158, 169
setjmp function, 315
sfr.h, 158
SFRs

multibyte, 92
shadow registers, 127
shift operations

result of, 121
shifting code, 51
short long data types, 97
sign extension when shifting, 121
SIGNAT directive, 151, 176
signature checking, 150
signature values, 131
signatures, 176
sin function, 317
single step compilation, 25
sinh function, 253
size of doubles, 52, 54
size PSECT flag, 168
skipping applications, 64
SLEEP macro, 318
source file, 22
SPACE assembler control, 179
space PSECT flag, 168
space switch type, 146
special characters in assembly, 159
special function registers

in assembly code, 162

multibyte, 92
special type qualifiers, 102
speed switch type, 146
sports cars, 161
sqrt function, 319
srand function, 320
stack

usage, 62
standard library files, 29, 30
standard type qualifiers, 101
start label, 33
startup module, 62

clearing bss, 188

data copying, 189

531

INDEX INDEX

startup.as, 31 file, 65
static variables, 114 hex, 65
STDIO, 152 mem, 65
storage class, 110 psect, 65
strcat function, 321 switch pragma directive, 146
strchr function, 322 symbol files, 43
strcmp function, 324 Avocet format, 197
strcpy function, 326 enhanced, 193
strcspn function, 327 generating, 193
strichr function, 322 local symbols in, 197
stricmp function, 324 old style, 191
string literals, 94, 224 removing local symbols from, 49
concatenation, 94 removing symbols from, 196
String packing, 225 source level, 43
strings symbol tables, 194, 196
assembly, 160 sorting, 194
storage location, 94, 224 symbols
type of, 94 assembler-generated, 161
stristr function, 338 global, 188, 205
strlen function, 328 linker defined, 152
strncat function, 329 undefined, 196
strncmp function, 331
strnepy function, 333 table read instruction, 116
strnicmp function, 331 tan function, 345
strpbrk function, 335 tanh function, 253
strrchr function, 336 temporary files, 57
strrichr function, 336 text psect, 125
strspn function, 337 time function, 346
strstr function, 338 time switch type, 146
strtod function, 339 Timers, 310
strtok function, 343 timers function, 356
strtol function, 341 TITLE assembler control, 179
struct psect, 119 toascii function, 348
structures tolower function, 348
bit-fields, 99 toupper function, 348
qualifiers, 100 translation unit, 23
SUBTITLE assembler control, 179 trunc function, 349
SUMMARY option type checking
class, 65 assembly routines, 131

532

INDEX

INDEX

type modifiers
combining with pointers, 104
type qualifier, 102
type qualifiers, 101
typographic conventions, 19

unamed structure members, 100
ungetc function, 350, 351
ungetch function, 352
universal toolsuite, 66
unnamed psect, 165
unsigned integer suffix, 93
unused memory

filling, 214
utilities, 187
utoa function, 353

va_arg function, 354
va_end function, 354
va_start function, 354
variable initialization, 32
variables
absolute, 115, 157
accessing from assembly, 135
auto, 110
char types, 96
floating point types, 98
in external memory, 103
int types, 96
local, 110
short long types, 97
static, 114
verbose, 49
version number, 65
volatile qualifier, 101, 159
vscanf function, 313

W register, 159
warning level, 65
setting, 197

warning message format, 65
warnings
level displayed, 65
suppressing, 197
with PSECT flag, 168
word addresses, 217
word boundaries, 168
writetimerx function, 356

XREF assembler control, 179
xtoi function, 357

533

INDEX INDEX

534

PICC18 Command-line Options

Option Meaning

-C Compile to object files only

-Dmacro Define preprocessor macro

-E+file Redirect and optionally append errors to a file
-Gfile Generate source-level debugging information
-Ipath Specify a directory pathname for include files
-Llibrary Specify a library to be scanned by the linker
-L-option Specify —option to be passed directly to the linker
-Mfile Request generation of a MAP file

-Nsize Specify identifier length

-0file Output file name

-P Preprocess assembler files

-0 Specify quiet mode

-S Compile to assembler source files only
-Usymbol Undefine a predefined preprocessor symbol

-V Verbose: display compiler pass command lines
-X Eliminate local symbols from symbol table
-—ADDRQUAL Set compiler response to memory qualifier
—--ASMLIST Generate assembler list file

--CHECKSUM=start-endQRQdestinat

1 Galkcukarea shecksum

--CHIP=processor

Selects which processor to compile for

-—CHIPINFO Displays a list of supported processors
--CMODE Specify compiler compatibility mode
--CODEOFFSET=address Offset program code to address
--CR=file Generate cross-reference listing

--DEBUGGER=t ype

Select the debugger that will be used

--DOUBLE=size

Selects size of double type

--ECHO

Echo command line

-—-EMI=type

Select mode of the external memory interface

--ERRATA=t ype

Add or remove specific software workarounds for sil-
icon errata issues.

--ERRFORMAT<=format>

Format error message strings to the given style

--ERRORS=number

Sets the maximun number of errors displayed

--FILL

Specify fill value for unused program memory

--FLOAT=size

Selects size of float type

continued. . .

PICC18 Command-line Options

Option

Meaning

--GETOPTION=app, file

Get the command line options for the named applica-
tion

--HELP<=option>

Display the compiler’s command line options

-—HTML

Generate HTML debug files

--IDE=ide

Configure the compiler for use by the named IDE

--LANG=I1anguage

Specify language for compiler messages

--MEMMAP=f1ile

Display memory summary information for the map
file

--MODE=mode

Choose compiler operating mode

--MSGDISABLE=messagelist

Disable Warning Messages

--MSGFORMAT<=format>

Format general message strings to the given style

--NODEL

Do not remove temporary files generated by the com-
piler

--NOEXEC

Go through the motions of compiling without actually
compiling

--OBJDIR=path

Specify intermediate files’ directory

--0PT<=type>

Enable general compiler optimizations

--OUTIDIR=path

Specify output files directory

——OUTPUT=t ype

Generate output file type

--PRE

Produce preprocessed source files

--PROTO

Generate function prototype information

--RAM=1o-hi<,1lo-hi,...>

Specify and/or reserve RAM ranges

--ROM=]o-hi<,lo-hi,...>

Specify and/or reserve ROM ranges

~-RUNTIME=t ype

Configure the C runtime libraries to the specified type

--SCANDEP

Generate file dependency “.DEP files”

--SERIAL=hexcodeladdress

Store a value in program memory

--SETOPTION=app, file

Set the command line options for the named applica-
tion

--SETUP=argument

Setup the product

-—SHROUD Obfusate p-code files

-—STRICT Enable strict ANSI keyword conformance
--SUMMARY=t ype Selects the type of memory summary output
--TIME Report compilation times

--VER Display the compiler’s version number
--WARN=Ievel Set the compiler’s warning level

continued. . .

PICC18 Command-line Options

Option Meaning

--WARNFORMAT=format Format warning message strings to given style

	Table of Contents
	List of Tables
	Introduction
	Typographic conventions

	PICC18 Command-line Driver
	Invoking the Compiler
	Long Command Lines

	The Compilation Sequence
	Single-step Compilation
	Generating Intermediate Files
	Special Processing
	Printf check
	Assembly Code Requirements

	Runtime Files
	Library Files
	Standard Libraries
	Utility Libraries
	Peripheral Libraries

	Runtime Startup Code
	Initialization of Data psects
	Clearing the Bss Psects

	The Powerup Routine
	The printf Routine

	Debugging Information
	Compiler Messages
	Messaging Overview
	Message Language
	Message Type
	Message Format
	Changing Message Behaviour
	Disabling Messages
	Changing Message Types

	PICC18 Driver Option Descriptions
	Option Formats
	-C: Compile to Object File
	-Dmacro: Define Macro
	-Efile: Redirect Compiler Errors to a File
	-Gfile: Generate Source-level Symbol File
	-Ipath: Include Search Path
	-Llibrary: Scan Library
	-L-option: Adjust Linker Options Directly
	-Mfile: Generate Map File
	-Nsize: Identifier Length
	-Ofile: Specify Output File
	-P: Preprocess Assembly Files
	-Q: Quiet Mode
	-S: Compile to Assembler Code
	-Umacro: Undefine a Macro
	-V: Verbose Compile
	-X: Strip Local Symbols
	--ADDRQUAL: Set Compiler Response to Memory Qualifier
	--ASMLIST: Generate Assembler .LST Files
	--CHECKSUM=start-end@destination<,specs>: Calculate a checksum
	--CHIP=processor: Define Processor
	--CHIPINFO: Display List of Supported Processors
	--CMODE: Specify compatibility mode
	--CODEOFFSET: Offset Program Code to Address
	--CR=file: Generate Cross Reference Listing
	--DEBUGGER=type: Select Debugger Type
	--DOUBLE=type: Select kind of Double Types
	--ECHO: Echo command line before processing
	--EMI=type: Select operating mode of the external memory interface (EMI)
	--ERRATA=type: Specify to add or remove specific errata workarounds
	--ERRFORMAT=format: Define Format for Compiler Messages
	--ERRORS=number: Maximum Number of Errors
	--FILL=opcode: Fill Unused Program Memory
	--FLOAT=type: Select kind of Float Types
	--GETOPTION=app,file: Get Command-line Options
	--HELP<=option>: Display Help
	--HTML: Generate HTML Debug Files
	--IDE=type: Specify the IDE being used
	--LANG=language: Specify the Language for Messages
	--MEMMAP=file: Display Memory Map
	--MODE=mode: Choose Compiler Operating Mode
	--MSGDISABLE=messagelist: Disable Warning Messages
	--MSGFORMAT=format: Set Advisory Message Format
	--NODEL: Do not Remove Temporary Files
	--NOEXEC: Don't Execute Compiler
	--OBJDIR=dir: Specify a Directory for Intermediate Files
	--OPT<=type>: Invoke Compiler Optimizations
	--OUTDIR=path: Specify a Directory for Output Files
	--OUTPUT=type: Specify Output File Type
	--PASS1: Compile to P-code
	--PRE: Produce Preprocessed Source Code
	--PROTO: Generate Prototypes
	--RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges
	--ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges
	--RUNTIME=type: Specify Runtime Environment
	--SCANDEP: Scan for Dependencies
	--SERIAL=hexcode@address: Store a Value at this Program Memory Address
	--SETOPTION=app,file: Set The Command-line Options for Application
	--SHROUD: Obfuscate p-code Files
	--STRICT: Strict ANSI Conformance
	--SUMMARY=type: Select Memory Summary Output Type
	--TIME: Report time taken for each phase of build process
	--VER: Display The Compiler's Version Information
	--WARN=level: Set Warning Level
	--WARNFORMAT=format: Set Warning Message Format

	MPLAB IDE v8 Universal Toolsuite Equivalents
	Directories Tab
	Compiler Tab
	Linker Tab
	Global Tab

	MPLAB X Universal Toolsuite Equivalents
	Compiler Category
	Messages
	Address Qualifiers
	Operation
	Preprocessor
	Optimization

	Linker Category
	Data
	Report
	Runtime
	Code
	Additional

	C Language Features
	ANSI Standard Issues
	Divergence from the ANSI C Standard
	Implementation-defined behaviour
	Non-ANSI Operations
	C18 Compatibility

	Processor-related Features
	Processor Support
	Device Header Files
	Stack
	Configuration Fuses
	ID Locations
	Bit Instructions
	EEPROM and Flash Runtime Access
	EEPROM Access
	Flash Access

	Using SFRs From C Code
	Multi-byte SFRs

	Supported Data Types and Variables
	Radix Specifiers and Constants
	Bit Data Types and Variables
	Using Bit-Addressable Registers
	8-Bit Integer Data Types and Variables
	16-Bit Integer Data Types
	24-Bit Integer Data Types
	32-Bit Integer Data Types and Variables
	Floating Point Types and Variables
	Structures and Unions
	Bit-fields in Structures
	Structure and Union Qualifiers

	Standard Type Qualifiers
	Const and Volatile Type Qualifiers

	Special Type Qualifiers
	Persistent Type Qualifier
	Near Type Qualifier
	Far Type Qualifier

	Pointer Types
	Combining Type Qualifiers and Pointers
	Data Pointers
	Pointers to Const
	Pointers to Both Memory Spaces
	Function Pointers

	Storage Class and Object Placement
	Local Variables
	Auto Variables
	Static Variables

	Absolute Variables
	Absolute Variables in Data Memory
	Absolute Variables in Program Memory

	Objects in Program Space
	Dynamic Memory Allocation
	Memory Models

	Functions
	Absolute Functions
	External Functions
	Function Argument Passing
	Function Return Values
	Structure Return Values

	Operators
	Integral Promotion
	Shifts applied to integral types
	Division and modulus with integral types

	Register Usage
	Psects
	Compiler-generated Psects
	Program Space Psects
	Data Space Psects

	Interrupt Handling in C
	Interrupt Functions
	Context Switching
	Context Saving
	Context Retrieval

	Enabling Interrupts
	Function Duplication
	Disabling Duplication

	Interrupt Registers

	Mixing C and Assembly Code
	External Assembly Language Functions
	#asm, #endasm and asm()
	Accessing C objects from within Assembly Code
	Accessing special function register names from assembler

	Interaction between Assembly and C Code
	Absolute Psects
	Undefined Symbols

	Preprocessing
	C Language Comments
	Preprocessor Directives
	Predefined Macros
	Pragma Directives
	The #pragma printf_check Directive
	The #pragma regsused Directive
	The #pragma switch Directive
	The #pragma inline Directive
	The #pragma interrupt_level Directive
	The #pragma warning Directive

	Linking Programs
	Replacing Library Modules
	Signature Checking
	Linker-Defined Symbols

	Standard I/O Functions and Serial I/O

	Macro Assembler
	Assembler Usage
	Assembler Options
	HI-TECH C Assembly Language
	Assembler Format Deviations
	Pre-defined Macros
	Statement Formats
	Characters
	Delimiters
	Special Characters

	Comments
	Special Comment Strings

	Constants
	Numeric Constants
	Character Constants and Strings

	Identifiers
	Significance of Identifiers
	Assembler-Generated Identifiers
	Location Counter
	Register Symbols
	Symbolic Labels

	Expressions
	Program Sections
	Assembler Directives
	GLOBAL
	END
	PSECT
	ORG
	EQU
	SET
	DB
	DW
	DS
	DABS
	FNCALL
	FNROOT
	IF, ELSIF, ELSE and ENDIF
	MACRO and ENDM
	LOCAL
	ALIGN
	REPT
	IRP and IRPC
	BANKSEL
	PROCESSOR
	SIGNAT

	Assembler Controls
	ASMOPT_OFF and ASMOPT_ON
	COND
	EXPAND
	INCLUDE
	LIST
	NOCOND
	NOEXPAND
	NOLIST
	NOXREF
	PAGE
	STACK
	SUBTITLE
	TITLE
	XREF

	Assembly List Files
	General Format
	Function Information
	Pointer Reference Graph
	Call Graph
	Call Graph Critical Paths

	Linker and Utilities
	Introduction
	Relocation and Psects
	Program Sections
	Local Psects
	Global Symbols
	Link and load addresses
	Operation
	Numbers in linker options
	-Aclass=low-high,...
	-Cx
	-Cpsect=class
	-Dclass=delta
	-Dsymfile
	-Eerrfile
	-F
	-Gspec
	-Hsymfile
	-H+symfile
	-Jerrcount
	-K
	-I
	-L
	-LM
	-Mmapfile
	-N, -Ns and-Nc
	-Ooutfile
	-Pspec
	-Qprocessor
	-S
	-Sclass=limit[, bound]
	-Usymbol
	-Vavmap
	-Wnum
	-X
	-Z

	Invoking the Linker
	Map Files
	Generation
	Contents
	General Information
	Psect Information listed by Module
	Psect Information listed by Class
	Segment Listing
	Unused Address Ranges
	Symbol Table

	Librarian
	The Library Format
	Using the Librarian
	Examples
	Supplying Arguments
	Listing Format
	Ordering of Libraries
	Error Messages

	Objtohex
	Checksum Specifications

	Cref
	-Fprefix
	-Hheading
	-Llen
	-Ooutfile
	-Pwidth
	-Sstoplist
	-Xprefix

	Cromwell
	-Pname[,architecture]
	-N
	-D
	-C
	-F
	-Okey
	-Ikey
	-L
	-E
	-B
	-M
	-V

	Hexmate
	Hexmate Command Line Options
	specifications,filename.hex
	+ Prefix
	-ADDRESSING
	-BREAK
	-CK
	-FILL
	-FIND
	-FIND...,DELETE
	-FIND...,REPLACE
	-FORMAT
	-HELP
	-LOGFILE
	-MASK
	-Ofile
	-SERIAL
	-SIZE
	-STRING
	-STRPACK

	Library Functions
	__CONFIG
	__EEPROM_DATA
	__IDLOC
	_DELAY
	_DELAY3
	ABS
	ACOS
	ASCTIME
	ASIN
	ASSERT
	ATAN
	ATAN2
	ATOF
	ATOI
	ATOL
	BSEARCH
	CEIL
	CGETS
	CLRWDT
	CONFIG_READ
	COS
	COSH
	CPUTS
	CTIME
	device_id_read
	DI
	DIV
	EEPROM_READ
	EVAL_POLY
	EXP
	FABS
	FLASH
	FMOD
	FLOOR
	FREXP
	GETCH
	GETCHAR
	GETS
	GMTIME
	IDLOC_READ
	ISALNUM
	ISDIG
	ITOA
	LABS
	LDEXP
	LDIV
	LOCALTIME
	LOG
	LONGJMP
	LTOA
	MEMCMP
	MEMMOVE
	MKTIME
	MODF
	NOP
	OS_TSLEEP
	POW
	PRINTF
	PUTCH
	PUTCHAR
	PUTS
	QSORT
	RAND
	READTIMER
	RESET
	ROUND
	SETJMP
	SIN
	SLEEP
	SQRT
	SRAND
	STRCAT
	STRCHR
	STRCMP
	STRCPY
	STRCSPN
	STRLEN
	STRNCAT
	STRNCMP
	STRNCPY
	STRPBRK
	STRRCHR
	STRSPN
	STRSTR
	STRTOD
	STRTOL
	STRTOK
	TAN
	TIME
	TOLOWER
	TRUNC
	UDIV
	ULDIV
	UNGETCH
	UTOA
	VA_START
	WRITETIMER
	XTOI

	Error and Warning Messages
	1...
	138...
	184...
	226...
	268...
	311...
	354...
	398...
	443...
	487...
	595...
	668...
	720...
	764...
	817...
	866...
	923...
	982...
	1039...
	1185...
	1234...
	1289...
	1350...
	0...

	Chip Information
	Index

